Type: Article
Publication Date: 2019-05-28
Citations: 192
DOI: https://doi.org/10.1103/physrevd.99.106014
We calculate logarithmic negativity, a quantum entanglement measure for mixed quantum states, in quantum error-correcting codes and find it to equal the minimal cross sectional area of the entanglement wedge in holographic codes with a quantum correction term equal to the logarithmic negativity between the bulk degrees of freedom on either side of the entanglement wedge cross section. This leads us to conjecture a holographic dual for logarithmic negativity that is related to the area of a cosmic brane with tension in the entanglement wedge plus a quantum correction term. This is closely related to (though distinct from) the holographic proposal for entanglement of purification. We check this relation for various configurations of subregions in AdS${}_3$/CFT${}_2$. These are disjoint intervals at zero temperature, as well as a single interval and adjacent intervals at finite temperature. We also find this prescription to effectively characterize the thermofield double state. We discuss how a deformation of a spherical entangling region complicates calculations and speculate how to generalize to a covariant description.