Jensen: An Easily-Extensible C++ Toolkit for Production-Level Machine Learning and Convex Optimization

Type: Preprint

Publication Date: 2018-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1807.06574

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ ensmallen: a flexible C++ library for efficient function optimization 2018 Shikhar Bhardwaj
Ryan R. Curtin
Marcus Edel
Yannis Mentekidis
Conrad Sanderson
+ ensmallen: a flexible C++ library for efficient function optimization 2018 Shikhar Bhardwaj
Ryan R. Curtin
Marcus Edel
Yannis Mentekidis
Conrad Sanderson
+ Cyanure: An Open-Source Toolbox for Empirical Risk Minimization for Python, C++, and soon more 2019 Julien Mairal
+ PDF Chat Cyanure: An Open-Source Toolbox for Empirical Risk Minimization for Python, C++, and soon more 2019 Julien Mairal
+ A scalable modular convex solver for regularized risk minimization 2007 Choon Hui Teo
Alex Smola
S. V. N. Vishwanathan
Quoc V. Le
+ PDF Chat Review Non-convex Optimization Method for Machine Learning 2024 Greg B Fotopoulos
Paul Popovich
Nicholas Papadopoulos
+ A generic and fast C++ optimization framework 2017 Ryan R. Curtin
Shikhar Bhardwaj
Marcus Edel
Yannis Mentekidis
+ A generic and fast C++ optimization framework 2017 Ryan R. Curtin
Shikhar Bhardwaj
Marcus Edel
Yannis Mentekidis
+ CVXPY: A Python-Embedded Modeling Language for Convex Optimization 2016 Steven Diamond
Stephen Boyd
+ MLPACK: A Scalable C++ Machine Learning Library 2012 Ryan R. Curtin
James R. Cline
N. P. Slagle
William B. March
Parikshit Ram
Nishant A. Mehta
Alexander Gray
+ PDF Chat A quasi-Newton approach to non-smooth convex optimization 2008 Jin Yu
S. V. N. Vishwanathan
Simon Günter
Nicol N. Schraudolph
+ MLPACK: A Scalable C++ Machine Learning Library 2012 Ryan R. Curtin
James R. Cline
N. P. Slagle
William B. March
Parikshit Ram
Nishant A. Mehta
Alexander Gray
+ CVXPY: A Python-Embedded Modeling Language for Convex Optimization 2016 Steven Diamond
Stephen Boyd
+ Benchopt: Reproducible, efficient and collaborative optimization benchmarks 2022 Thomas Moreau
Mathurin Massias
Alexandre Gramfort
Pierre Ablin
Pierre‐Antoine Bannier
Benjamin Charlier
Mathieu Dagréou
Tom Dupré la Tour
Ghislain Durif
Cássio F. Dantas
+ Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning 2017 Frank E. Curtis
Katya Scheinberg
+ Theory of Convex Optimization for Machine Learning. 2014 Sébastien Bubeck
+ Small-Data, Large-Scale Linear Optimization 2018 Vishal Gupta
+ A generic coordinate descent solver for nonsmooth convex optimization 2018 Olivier Fercoq
+ ZOOpt/ZOOjl: Toolbox for Derivative-Free Optimization. 2018 Yu-Ren Liu
Yi-Qi Hu
Hong Qian
Yang Yu
Chao Qian
+ Differentiable Convex Optimization Layers 2019 Akshay Agrawal
Brandon Amos
Shane Barratt
Stephen Boyd
Steven Diamond
J. Zico Kolter

Works Cited by This (0)

Action Title Year Authors