In the classic prophet inequality, a problem in optimal stopping theory, samples from independent random variables (possibly differently distributed) arrive online. A gambler that knows the distributions, but cannot see the future, must decide at each point in time whether to stop and pick the current sample or to continue and lose that sample forever. The goal of the gambler is to maximize the expected value of what she picks and the performance measure is the worst case ratio between the expected value the gambler gets and what a prophet, that sees all the realizations in advance, gets. In the late seventies, Krengel and Sucheston, and Garling [16], established that this worst case ratio is a constant and that 1/2 is the best possible such constant. In the last decade the theory of prophet inequalities has resurged as an important problem due to its connections to posted price mechanisms, frequently used in online sales. A particularly interesting variant is the so-called Prophet Secretary problem, in which the only difference is that the samples arrive in a uniformly random order. For this variant several algorithms are known to achieve a constant of 1 − 1/e and very recently this barrier was slightly improved by Azar et al. [3].In this paper we derive a way of analyzing multi-threshold strategies that basically sets a nonincreasing sequence of thresholds to be applied at different times. The gambler will thus stop the first time a sample surpasses the corresponding threshold. Specifically we consider a class of very robust strategies that we call blind quantile strategies. These constitute a clever generalization of single threshold strategies and consist in fixing a function which is used to define a sequence of thresholds once the instance is revealed. Our main result shows that these strategies can achieve a constant of 0.669 in the Prophet Secretary problem, improving upon the best known result of Azar et al. [3], and even that of Beyhaghi et al. [4] that works in the case the gambler can select the order of the samples. The crux of the analysis is a very precise analysis of the underlying stopping time distribution for the gambler's strategy that is inspired by the theory of Schur convex functions. We further prove that our family of blind strategies cannot lead to a constant better than 0.675.Finally we prove that no nonadaptive algorithm for the gambler can achieve a constant better than 0.732, which also improves upon a recent result of Azar et al. [3]. Here, a nonadaptive algorithm is an algorithm whose decision to stop can depend on the index of the random variable being sampled, on the value sampled, and on the time, but not on the history that has been observed.