Lipschitz Restrictions of Continuous Functions and a Simple Construction of Ulam-Zahorski <em>C</em><sup>1</sup> Interpolation

Type: Article

Publication Date: 2018-01-01

Citations: 1

DOI: https://doi.org/10.14321/realanalexch.43.2.0293

Abstract

We present a simple argument showing that for every continuous function \(f\colon\mathbb{R}\to\mathbb{R}\), its restriction to some perfect set is Lipschitz. We will use this result to provide an elementary proof of the \(C^1\) free interpolation theorem, that for every continuous function \(f\colon\mathbb{R}\to\mathbb{R}\) there exists a continuously differentiable function \(g\colon\mathbb{R}\to\mathbb{R}\) which agrees with \(f\) on an uncountable set. The key novelty of our presentation is that no part of it, including the cited results, requires from the reader any prior familiarity with Lebesgue measure theory.

Locations

  • Real Analysis Exchange - View
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Differentiability versus continuity: Restriction and extension theorems and monstrous examples 2018 Krzysztof Chris Ciesielski
Juan B. Seoane SepĂșlveda
+ Differentiability versus continuity: Restriction and extension theorems and monstrous examples 2018 Krzysztof Chris Ciesielski
Juan B. Seoane SepĂșlveda
+ PDF Chat Differentiability versus continuity: Restriction and extension theorems and monstrous examples 2018 Krzysztof Chris Ciesielski
Juan B. Seoane‐SepĂșlveda
+ On the Core of a Low Dimensional Set-Valued Mapping 2021 Pavel Shvartsman
+ Cantor sets of low density and Lipschitz functions on $C^1$ curves 2021 Rafael Chiclana
+ On the Core of a Low Dimensional Set-Valued Mapping 2021 Pavel Shvartsman
+ PDF Chat Hard Sard: Quantitative Implicit Function and Extension Theorems for Lipschitz Maps 2012 Jonas Azzam
Raanan Schul
+ Approximation by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>C</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math>-smooth, Lipschitz functions on Banach spaces 2005 R. Fry
+ Whitney Extension Theorems for convex functions of the classes $C^1$ and $C^{1,ω}$ 2015 Daniel Azagra
Carlos Mudarra
+ Lipschitz Image of Lipschitz Functions 2002 Marianna Csörnyei
+ The Core of a 2-Dimensional Set-Valued Mapping. Existence Criteria and Efficient Algorithms for Lipschitz Selections of Low Dimensional Set-Valued Mappings 2020 Pavel Shvartsman
+ Whitney Extension Theorems for convex functions of the classes $C^1$ and $C^{1,\omega}$ 2015 Daniel Azagra
Carlos Mudarra
+ Lipschitz-free spaces over properly metrizable spaces and approximation properties 2024 R. Jeffrey Smith
Filip Talimdjioski
+ PDF Chat On the core of a low dimensional set-valued mapping 2022 Pavel Shvartsman
+ PDF Chat CONTROLLING LIPSCHITZ FUNCTIONS 2018 Andrey Kupavskii
JĂĄnos Pach
GĂĄbor Tardos
+ PDF Chat Preliminaries 2022 Jean‐Luc Marichal
NaĂŻm ZĂ©naĂŻdi
+ Lower Bounds for High Derivatives of Smooth Functions With Given Zeros 2024 Gil Goldman
Yosef Yomdin
+ PDF Chat Strong differentiability of Lipschitz functions 1978 C. J. Neugebauer
+ Approximation of Lipschitz functions preserving boundary values 2018 Robert Deville
Carlos Mudarra
+ Approximation of Lipschitz functions preserving boundary values 2018 Robert Deville
Carlos Mudarra