A Note about: Local Explanation Methods for Deep Neural Networks lack Sensitivity to Parameter Values

Type: Preprint

Publication Date: 2018-01-01

Citations: 11

DOI: https://doi.org/10.48550/arxiv.1806.04205

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values 2018 Julius Adebayo
Justin Gilmer
Ian Goodfellow
Been Kim
+ Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values 2018 Julius Adebayo
Justin Gilmer
Ian Goodfellow
Been Kim
+ Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network Explanations 2022 Alexander Binder
Leander Weber
Sebastian Lapuschkin
Grégoire Montavon
Klaus‐Robert MĂŒller
Wojciech Samek
+ PDF Chat Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network Explanations 2023 Alexander Binder
Leander Weber
Sebastian Lapuschkin
Grégoire Montavon
Klaus‐Robert MĂŒller
Wojciech Samek
+ Better Understanding Differences in Attribution Methods via Systematic Evaluations 2023 Sukrut Rao
Moritz Böhle
Bernt Schiele
+ Boundary Attributions Provide Normal (Vector) Explanations. 2021 Zifan Wang
Matt Fredrikson
Anupam Datta
+ PDF Chat Towards Better Understanding Attribution Methods 2022 Sukrut Rao
Moritz Böhle
Bernt Schiele
+ Towards Better Understanding Attribution Methods 2022 Sukrut Rao
Moritz Böhle
Bernt Schiele
+ Guided Integrated Gradients: An Adaptive Path Method for Removing Noise 2021 Andrei Kapishnikov
Subhashini Venugopalan
Besim Avci
Ben Wedin
Michael Terry
Tolga Bolukbasi
+ Guided Integrated Gradients: An Adaptive Path Method for Removing Noise 2021 Andrei Kapishnikov
Subhashini Venugopalan
Besim Avci
Ben Wedin
Michael Terry
Tolga Bolukbasi
+ PDF Chat Guided Integrated Gradients: an Adaptive Path Method for Removing Noise 2021 Andrei Kapishnikov
Subhashini Venugopalan
Besim Avci
Ben Wedin
Michael Terry
Tolga Bolukbasi
+ Towards Better Visualizing the Decision Basis of Networks via Unfold and Conquer Attribution Guidance 2023 Jung-Ho Hong
Woo-Jeoung Nam
Kyu-Sung Jeon
Seong‐Whan Lee
+ Towards Better Visualizing the Decision Basis of Networks via Unfold and Conquer Attribution Guidance 2023 Jung-Ho Hong
Woo-Jeoung Nam
Kyu-Sung Jeon
Seong‐Whan Lee
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
+ A Rigorous Study of Integrated Gradients Method and Extensions to Internal Neuron Attributions 2022 Daniel Lundström
Tianjian Huang
Meisam Razaviyayn
+ PDF Chat Explaining Deep Neural Networks by Leveraging Intrinsic Methods 2024 Biagio La Rosa
+ On Gradient-like Explanation under a Black-box Setting: When Black-box Explanations Become as Good as White-box 2023 Yi Cai
Gerhard Wunder
+ PDF Chat Visualization of Supervised and Self-Supervised Neural Networks via Attribution Guided Factorization 2021 Shir Gur
Ameen Ali
Lior Wolf
+ A-FMI: Learning Attributions from Deep Networks via Feature Map Importance 2021 An Zhang
Xiang Wang
Chengfang Fang
Jie Shi
Xiangnan He
Tat‐Seng Chua
Zehua Chen