Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Uniqueness results for viscous incompressible fluids
Tobias Barker
Type:
Dissertation
Publication Date:
2017-01-01
Citations:
4
Share
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
Uniqueness Results for Weak Leray–Hopf Solutions of the Navier–Stokes System with Initial Values in Critical Spaces
2017
Tobias Barker
+
Existence and Weak* Stability for the Navier-Stokes System with Initial Values in Critical Besov Spaces
2017
Tobias Barker
+
Characterization of initial data in the homogeneous Besov space for solutions in the Serrin class of the Navier-Stokes equations
2019
Hideo Kozono
Akira Okada
Senjo Shimizu
+
Regularity aspects of the Navier-Stokes equations in critical spaces
2020
Dallas Albritton
+
Local Regularity Results for the Instationary Navier-Stokes Equations Based on Besov Space Type Criteria
2016
Reinhard Farwig
+
PDF
Chat
Blow-up criteria for the Navier–Stokes equations in non-endpoint critical Besov spaces
2018
Dallas Albritton
+
Blow-up of Critical Besov Norms at a Potential Navier–Stokes Singularity
2016
Isabelle Gallagher
Gabriel S. Koch
Fabrice Planchon
+
Local Hadamard well-posedness results for the Navier-Stokes equations
2019
Tobias Barker
+
Advances in the 3D Navier-Stokes Equations
2017
Michael Z. Zgurovsky
Pavlo O. Kasyanov
+
PDF
Chat
Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace”
2018
Charles Fefferman
James C. Robinson
José L. Rodrigo
+
Uma análise em espaços de Besov homogêneos das equações de Navier-Stokes
2022
Narayan Vilash Machaca León
+
Leray's fundamental work on the Navier-Stokes equations: a modern review of "Sur le mouvement d'un liquide visqueux emplissant l'espace"
2017
Wojciech S. Ożański
Benjamin C. Pooley
+
Navier–Stokes equation with hereditary viscosity and initial data in Besov–Morrey spaces
2024
Bruno de Andrade
Claudio Cuevas
Jarbas Dantas
+
On the well-posedness of the full low-Mach number limit system in general critical Besov spaces
2012
Raphaël Danchin
Xian Liao
+
PDF
Chat
ON THE WELL-POSEDNESS OF THE FULL LOW MACH NUMBER LIMIT SYSTEM IN GENERAL CRITICAL BESOV SPACES
2012
Raphaël Danchin
Xian Liao
+
PDF
Chat
GLOBAL UNIQUE SOLUTIONS FOR THE INHOMOGENEOUS NAVIER-STOKES EQUATION WITH ONLY BOUNDED DENSITY, IN CRITICAL REGULARITY SPACES
2022
Raphaël Danchin
Shan Wang
+
PDF
Chat
Local well-posedness for the incompressible Euler equations in the critical Besov spaces
2004
Yong Zhou
+
PDF
Chat
Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces
2020
Hongjie Dong
Kunrui Wang
+
The continuous dependence for the Navier-Stokes equations in $\dot{B}^{\frac{d}{p}-1}_{p,r}$
2020
Weikui Ye
Zhaoyang Yin
Wei Luo
+
Local well-posedness of the incompressible Euler equations in $B^1_{\infty,1}$ and the inviscid limit of the Navier-Stokes equations
2016
Zihua Guo
Jinlu Li
Zhaoyang Yin
Works That Cite This (4)
Action
Title
Year
Authors
+
PDF
Chat
Scale-Invariant Estimates and Vorticity Alignment for Navier–Stokes in the Half-Space with No-Slip Boundary Conditions
2019
Tobias Barker
Christophe Prange
+
PDF
Chat
Localised necessary conditions for singularity formation in the Navier-Stokes equations with curved boundary
2020
Dallas Albritton
Tobias Barker
+
PDF
Chat
Quantitative Regularity for the Navier–Stokes Equations Via Spatial Concentration
2021
Tobias Barker
Christophe Prange
+
PDF
Chat
On Some Properties of the Curl Operator and Their Consequences for the Navier-Stokes System
2022
Nicolás Lerner
François Vigneron
Works Cited by This (0)
Action
Title
Year
Authors