Compressions of Self-Adjoint Extensions of a Symmetric Operator and M.G. Krein’s Resolvent Formula

Type: Article

Publication Date: 2018-06-07

Citations: 14

DOI: https://doi.org/10.1007/s00020-018-2465-3

Abstract

Let S be a symmetric operator with finite and equal defect numbers in the Hilbert space $${{\mathfrak {H}}}$$ . We study the compressions $$P_{{\mathfrak {H}}}\widetilde{A}\big |_{{\mathfrak {H}}}$$ of the self-adjoint extensions $$\widetilde{A}$$ of S in some Hilbert space $$\widetilde{{\mathfrak {H}}}\supset {{\mathfrak {H}}}$$ . These compressions are symmetric extensions of S in $${{\mathfrak {H}}}$$ . We characterize properties of these compressions through the corresponding parameter of $$\widetilde{A}$$ in M.G. Krein’s resolvent formula. If $$\dim \, (\widetilde{{\mathfrak {H}}}\ominus {{\mathfrak {H}}})$$ is finite, according to Stenger’s lemma the compression of $$\widetilde{A}$$ is self-adjoint. In this case we express the corresponding parameter for the compression of $$\widetilde{A}$$ in Krein’s formula through the parameter of the self-adjoint extension $$\widetilde{A}$$ .

Locations

  • Integral Equations and Operator Theory - View - PDF

Similar Works

Action Title Year Authors
+ Finite-dimensional Self-adjoint Extensions of a Symmetric Operator with Finite Defect and their Compressions 2017 Aad Dijksma
Heinz Langer
+ PDF Chat W. Stenger’s and M.A. Nudelman’s results and resolvent formulas involving compressions 2020 Aad Dijksma
Heinz Langer
+ Self-Adjoint Extensions of a Symmetric Linear Relation with Finite Defect: Compressions and Straus Subspaces 2020 Aad Dijksma
Heinz Langer
+ PDF Chat On Compressions of Self-Adjoint Extensions of a Symmetric Linear Relation 2019 Vadim Mogilevskii
+ PDF Chat On Compressions of Self-Adjoint Extensions of a Symmetric Linear Relation with Unequal Deficiency Indices 2020 Vadim Mogilevskii
+ On compressions of self-adjoint extensions of a symmetric linear relation with unequal deficiency indices 2019 Vadim Mogilevskii
+ On compressions of self-adjoint extensions of a symmetric linear relation 2018 Vadim Mogilevskii
+ On compressions of self-adjoint extensions of a symmetric linear relation 2018 Vadim Mogilevskii
+ The spectra of the self-adjoint extensions of a symmetric operator $S$ inside a gap of $S$ 2000 Johannes F. Brasche
+ $ mathcal{H} $ -n -perturbations of Self-adjoint Operators and Krein's Resolvent Formula 2003 Pavel Kurasov
+ PDF Chat A characterization of semibounded selfadjoint operators 1997 Seppo Hassi
Michael Kaltenbäck
Henk de Snoo
+ Theory of the self-adjoint extensions of symmetric operators with a spectral gap 1985 G. Nenchu
G. Nenciu
+ Generalized Resolvents of a Class of Symmetric Operators in Krein Spaces 2007 Jussi Behrndt
Annemarie Luger
Carsten Trunk
+ PDF Chat Trace formulas for $\mathcal{S}^p$-perturbations and extension of Koplienko-Neidhardt trace formulas 2024 Arup Chattopadhyay
Clément Coine
Saikat Giri
Chandan Pradhan
+ PDF Chat Invertible extensions of symmetric operators and the corresponding generalized resolvents 2014 Sergey M‎. ‎Zagorodnyuk
+ On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl_2 2011 Sergii Kuzhel
Oleksii Patsiuk
+ On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl_2 2011 Sergii Kuzhel
Oleksii Patsiuk
+ PDF Chat Finite-Codimensional Compressions of Symmetric and Self-Adjoint Linear Relations in Krein Spaces 2016 T. Ya. Azizov
Branko Ćurgus
Aad Dijksma
+ The Spectrum of a Selfadjoint Compression of a Selfadjoint Operator 1970 John Hosack
+ PDF Chat Compressions of selfadjoint and maximal dissipative extensions of non-densely defined symmetric operators 2024 Yu. M. Arlinskiĭ