DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images

Type: Article

Publication Date: 2018-06-01

Citations: 847

DOI: https://doi.org/10.1109/cvprw.2018.00031

Abstract

We present the DeepGlobe 2018 Satellite Image Understanding Challenge, which includes three public competitions for segmentation, detection, and classification tasks on satellite images (Figure 1). Similar to other challenges in computer vision domain such as DAVIS[21] and COCO[33], DeepGlobe proposes three datasets and corresponding evaluation methodologies, coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2018. We observed that satellite imagery is a rich and structured source of information, yet it is less investigated than everyday images by computer vision researchers. However, bridging modern computer vision with remote sensing data analysis could have critical impact to the way we understand our environment and lead to major breakthroughs in global urban planning or climate change research. Keeping such bridging objective in mind, DeepGlobe aims to bring together researchers from different domains to raise awareness of remote sensing in the computer vision community and vice-versa. We aim to improve and evaluate state-of-the-art satellite image understanding approaches, which can hopefully serve as reference benchmarks for future research in the same topic. In this paper, we analyze characteristics of each dataset, define the evaluation criteria of the competitions, and provide baselines for each task.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Satellite Imagery Feature Detection using Deep Convolutional Neural Network: A Kaggle Competition 2017 Vladimir I. Iglovikov
Sergey Mushinskiy
Vladimir Osin
+ Text2Seg: Remote Sensing Image Semantic Segmentation via Text-Guided Visual Foundation Models 2023 Jielu Zhang
Zhongliang Zhou
Gengchen Mai
Lan Mu
Mengxuan Hu
Sheng Li
+ Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks 2016 Nicolas Audebert
Bertrand Le Saux
Sébastien Lefèvre
+ Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks 2016 Nicolas Audebert
Bertrand Le Saux
Sébastien Lefèvre
+ PDF Chat Towards Open-Vocabulary Remote Sensing Image Semantic Segmentation 2024 C.H. Ye
Yunzhi Zhuge
Pingping Zhang
+ Satellite Image Semantic Segmentation 2021 Éric Guérin
Killian Oechslin
Christian Wolf
Benoît Martinez
+ SeasoNet: A Seasonal Scene Classification, segmentation and Retrieval dataset for satellite Imagery over Germany 2022 Dominik Koßmann
Viktor Brack
Thorsten Wilhelm
+ Learning Semantic Segmentation with Query Points Supervision on Aerial Images 2023 Santiago Rivier
Carlos Hinojosa
Silvio Giancola
Bernard Ghanem
+ GEO-Bench: Toward Foundation Models for Earth Monitoring 2023 Alexandre Lacoste
Nils Lehmann
Pau Rodríguez
Evan David Sherwin
Hannah Kerner
Björn Lütjens
Jeremy Irvin
David Dao
Hamed Alemohammad
Alexandre Drouin
+ PDF Chat Seasonet: A Seasonal Scene Classification, Segmentation and Retrieval Dataset for Satellite Imagery Over Germany 2022 Dominik Kobmann
Viktor Brack
Thorsten Wilhelm
+ PDF Chat The Outcome of the 2022 Landslide4Sense Competition: Advanced Landslide Detection From Multisource Satellite Imagery 2022 Omid Ghorbanzadeh
Yonghao Xu
Hengwei Zhao
Junjue Wang
Yanfei Zhong
Dong Zhao
Qi Zang
Shuang Wang
Fahong Zhang
Yilei Shi
+ PDF Chat CMID: A Unified Self-Supervised Learning Framework for Remote Sensing Image Understanding 2023 Dilxat Muhtar
Xueliang Zhang
Pengfeng Xiao
Zhenshi Li
Feng Long Gu
+ DeepSatData: Building large scale datasets of satellite images for training machine learning models 2021 Michail Tarasiou
Stefanos Zafeiriou
+ The Outcome of the 2022 Landslide4Sense Competition: Advanced Landslide Detection from Multi-Source Satellite Imagery 2022 Omid Ghorbanzadeh
Yonghao Xu
Hengwei Zhao
Junjue Wang
Yanfei Zhong
Dong Zhao
Qi Zang
Shuang Wang
Fahong Zhang
Yilei Shi
+ The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot 2023 Lucas Prado Osco
Qiusheng Wu
Eduardo Lopes de Lemos
Wesley Nunes Gonçalves
Ana Paula Marques Ramos
Jonathan Li
José Marcato
+ The Segment Anything Model (SAM) for Remote Sensing Applications: From Zero to One Shot 2023 Lucas Prado Osco
Qiusheng Wu
Eduardo Lopes de Lemos
Wesley Nunes Gonçalves
Ana Paula Marques Ramos
Jonathan Li
José Marcato Junior
+ SAMRS: Scaling-up Remote Sensing Segmentation Dataset with Segment Anything Model 2023 Di Wang
Jing Zhang
Boxue Du
Dacheng Tao
Liangpei Zhang
+ Semantic Segmentation of Medium-Resolution Satellite Imagery using Conditional Generative Adversarial Networks 2020 Aditya Kulkarni
Tharun Mohandoss
Daniel Northrup
Ernest Mwebaze
Hamed Alemohammad
+ DeepTriNet: A Tri-Level Attention Based DeepLabv3+ Architecture for Semantic Segmentation of Satellite Images 2023 Tareque Bashar Ovi
Shakil Mosharrof
Nomaiya Bashree
Md Shofiqul Islam
Muhammad Nazrul Islam
+ Weakly Supervised Semantic Segmentation of Satellite Images for Land Cover Mapping -- Challenges and Opportunities 2020 Michael Schmitt
Jonathan Prexl
Patrick Ebel
Lukas Liebel
Xiao Xiang Zhu

Works That Cite This (206)

Action Title Year Authors
+ PDF Chat AI powered road network prediction with fused low-resolution satellite imagery and GPS trajectory 2024 Necip Enes Gengeç
Ergin Tarı
Ulas Bagci
+ PDF Chat Semi-supervised semantic segmentation in Earth Observation: the MiniFrance suite, dataset analysis and multi-task network study 2021 Javiera Castillo-Navarro
Bertrand Le Saux
Alexandre Boulch
Nicolas Audebert
Sébastien Lefèvre
+ PDF Chat Semantic segmentation using Vision Transformers: A survey 2023 Hans Thisanke
Chamli Deshan
Kavindu Chamith
Sachith Seneviratne
Rajith Vidanaarachchi
Damayanthi Herath
+ PDF Chat Correcting rural building annotations in OpenStreetMap using convolutional neural networks 2018 John E. Vargas-Muñoz
Sylvain Lobry
Alexandre X. Falcão
Devis Tuia
+ PDF Chat Deep learning-based aerial image segmentation with open data for disaster impact assessment 2021 Ananya Gupta
Simon Watson
Hujun Yin
+ PDF Chat Cross-dimensional transfer learning in medical image segmentation with deep learning 2023 Hicham Messaoudi
Ahror Belaid
D. Ben Salem
Pierre-Henri Conze
+ PDF Chat Dense affinity matching for Few-Shot Segmentation 2024 Hao Chen
Yonghan Dong
Zhe‐Ming Lu
Yunlong Yu
Yingming Li
Jungong Han
Zhongfei Zhang
+ Forest and Water Bodies Segmentation Through Satellite Images Using U-Net 2022 Dmytro Filatov
Ghulam Nabi Ahmad Hassan Yar
+ PDF Chat Transformers For Recognition In Overhead Imagery: A Reality Check 2023 Francesco Luzi
Aneesh Gupta
Leslie M. Collins
Kyle Bradbury
Jordan M. Malof
+ X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data 2020 Danfeng Hong
Naoto Yokoya
Gui-Song Xia
Jocelyn Chanussot
Xiao Xiang Zhu

Works Cited by This (13)

Action Title Year Authors
+ SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation 2015 Vijay Badrinarayanan
Alex Kendall
Roberto Cipolla
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ PDF Chat DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 2017 Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Murphy
Alan Yuille
+ PDF Chat Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks 2017 Nicolas Audebert
Bertrand Le Saux
Sébastien Lefèvre
+ PDF Chat TorontoCity: Seeing the World with a Million Eyes 2017 Shenlong Wang
Min Bai
Gellért Máttyus
Hang Chu
Wenjie Luo
Bin Yang
Justin Liang
Joel Cheverie
Sanja Fidler
Raquel Urtasun
+ The 2018 DAVIS Challenge on Video Object Segmentation. 2018 Sergi Caelles
Alberto Montes
Kevis-Kokitsi Maninis
Yuhua Chen
Luc Van Gool
Federico Perazzi
Jordi Pont-Tuset
+ PDF Chat Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources 2017 Xiao Xiang Zhu
Devis Tuia
Lichao Mou
Gui-Song Xia
Liangpei Zhang
Feng Xu
Friedrich Fraundorfer
+ PDF Chat Focal Loss for Dense Object Detection 2018 Tsung-Yi Lin
Priya Goyal
Ross Girshick
Kaiming He
Piotr Dollár
+ The 2018 DAVIS Challenge on Video Object Segmentation 2018 Jordi Pont-Tuset
Federico Perazzi
Sergi Caelles
Pablo Arbeláez
Alexander Sorkine‐Hornung
Luc Van Gool