Deep Variational Reinforcement Learning for POMDPs

Type: Preprint

Publication Date: 2018-06-06

Citations: 14

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Deep Variational Reinforcement Learning for POMDPs 2018 Maximilian Igl
Luisa Zintgraf
Tuan Anh Le
Frank Wood
Shimon Whiteson
+ On Improving Deep Reinforcement Learning for POMDPs 2017 Pengfei Zhu
Xin Li
Pascal Poupart
Guanghui Miao
+ Contrastive Variational Model-Based Reinforcement Learning for Complex Observations. 2020 Xiao Ma
Siwei Chen
David Hsu
Wee Sun Lee
+ Discriminative Particle Filter Reinforcement Learning for Complex Partial Observations 2020 Xiao Ma
Péter Karkus
Nan Ye
David Hsu
Wee Sun Lee
+ Discriminative Particle Filter Reinforcement Learning for Complex Partial Observations 2020 Xiao Ma
Péter Karkus
David Hsu
Wee Sun Lee
Nan Ye
+ Learning Markov State Abstractions for Deep Reinforcement Learning 2021 Cameron Allen
Neev Parikh
Omer Gottesman
George Konidaris
+ PDF Chat EVaDE : Event-Based Variational Thompson Sampling for Model-Based Reinforcement Learning 2025 Siddharth Aravindan
Dixant Mittal
Wee Sun Lee
+ Posterior Sampling for Deep Reinforcement Learning 2023 Remo Sasso
Michelangelo Conserva
Paulo Rauber
+ Flow-based Recurrent Belief State Learning for POMDPs 2022 Xiaoyu Chen
Yao Mu
Ping Luo
Shengbo Eben Li
Jianyu Chen
+ Variational Inference for Data-Efficient Model Learning in POMDPs 2018 Sebastian Tschiatschek
Kai Arulkumaran
Jan Stühmer
Katja Hofmann
+ VIME: Variational Information Maximizing Exploration 2016 Rein Houthooft
Xi Chen
Yan Duan
John Schulman
Filip De Turck
Pieter Abbeel
+ Variational Policy Propagation for Multi-agent Reinforcement Learning 2020 Chao Qu
Hui Li
Chang Liu
Junwu Xiong
James Zhang
Wei Chu
Weiqiang Wang
Yuan Qi
Le Song
+ PDF Chat Learning Interpretable Policies in Hindsight-Observable POMDPs through Partially Supervised Reinforcement Learning 2024 M Lanier
Ying Xu
Nathan Jacobs
Chongjie Zhang
Yevgeniy Vorobeychik
+ Outcome-Driven Reinforcement Learning via Variational Inference 2021 Tim G. J. Rudner
Vitchyr H. Pong
Rowan McAllister
Yarin Gal
Sergey Levine
+ Outcome-Driven Reinforcement Learning via Variational Inference 2021 Tim G. J. Rudner
Vitchyr H. Pong
Rowan McAllister
Yarin Gal
Sergey Levine
+ PDF Chat Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning 2024 Marvin Alles
Philip Becker-Ehmck
Patrick van der Smagt
Maximilian Karl
+ VIREL: A Variational Inference Framework for Reinforcement Learning 2019 Matthew Fellows
Anuj Mahajan
Tim G. J. Rudner
Shimon Whiteson
+ Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings 2018 John D. Co-Reyes
YuXuan Liu
Abhishek Gupta
Benjamin Eysenbach
Pieter Abbeel
Sergey Levine
+ BADDr: Bayes-Adaptive Deep Dropout RL for POMDPs 2022 Sammie Katt
Hai V. Nguyen
Frans A. Oliehoek
Christopher Amato
+ Towards Boosting the Performance of Deep Reinforcement Learning for Partially Observable Markov Decision Processes 2017 Pengfei Zhu
Xin Li
Pascal Poupart

Works Cited by This (0)

Action Title Year Authors