Type: Article
Publication Date: 2018-10-17
Citations: 20
DOI: https://doi.org/10.1103/physrevb.98.134507
We study the effects of disorder on a Kitaev chain with longer-range hopping and pairing terms which is capable of forming local zero energy excitations and, hence, serves as a minimal model for localization-protected edge qubits. The clean phase diagram hosts regions with 0, 1, and 2 Majorana zero-modes (MZMs) per edge. Using a semianalytic approach corroborated by numerical calculations of the entanglement degeneracy, we show how phase boundaries evolve under the influence of disorder. While in general the 2 MZM region is stable with respect to moderate disorder, stronger values drive transition towards the topologically trivial phase. We uncover regions where the addition of disorder induces local zero-modes absent for the corresponding clean system. Interestingly, we discover that disorder destroys any direct transition between phases with zero and two MZMs by creating a tricritical point at the 2-0 MZM boundary of the clean system. Finally, motivated by recent experiments, we calculate the characteristic signatures of the disorder phase diagram as measured in dynamical local and nonlocal ``qubit'' correlation functions. Our work provides a minimal starting point to investigate the coherence properties of local qubits in the presence of disorder.