Tate Cohomology for Complexes with Finite Gorenstein AC-Injective Dimension

Type: Article

Publication Date: 2018-07-09

Citations: 1

DOI: https://doi.org/10.1007/s41980-018-0122-x

Locations

  • Bulletin of the Iranian Mathematical Society - View

Similar Works

Action Title Year Authors
+ Complete cohomology for complexes with finite Gorenstein AC-projective dimension 2016 Jiangsheng Hu
Yuxian Geng
Qinghua Jiang
+ Tate Homology of Modules of Finite Gorenstein Flat Dimension 2012 Li Liang
+ Gorensteinness and Tate Cohomology in Exact Categories 2015 Wang
Zhicheng
+ PDF Chat Gorenstein AC-projective complexes 2018 James Gillespie
+ Gorenstein FI-Flat Dimension and Tate Homology 2016 C. Selvaraj
V. Biju
R. Udhayakumar
+ Tate cohomology for profinite groups 2001 Carla Studer-de Boer
+ The Tate cohomology 2021 Ragnar-Olaf Buchweitz
+ Homology theories for complexes of finite Gorenstein dimensions 2018 Liang Li
+ Gorenstein $$n$$ n -flat dimension and Tate homology 2015 C. Selvaraj
R. Udhayakumar
+ Tate Homology of Modules Based on Tate $$\mathcal {F}_C$$ F C -Resolutions 2018 Peng-Ju Ma
Renyu Zhao
Xiaoqiang Luo
+ Gorenstein Injective and Projective Complexes 2022 J. R. García Rozas
+ Tate Cohomology of Finite Dimensional Hopf Algebras 2014 Van C. Nguyen
+ Maximal Cohen-Macaulay Modules and Tate-Cohomology Over Gorenstein Rings 1986 Ragnar-Olaf Buchweitz
+ Complete cohomology for complexes with finite Gorenstein AC-projective dimension 2016 Jiangsheng
Hu
Yuxian
Geng
Qinghua Qinghua
Jiang
+ Vanishing of Tate homology — An application of stable homology for complexes 2016 Yan Ping Liu
Zhong Kui Liu
Xiao Yan Yang
+ Gorenstein projective dimensions of complexes 2011 Zhong Kui Liu
Chun Xia Zhang
+ Cohomology of Complexes of Sheaves 2016 Torsten Wedhorn
+ Maximal Cohen–Macaulay Modules and Tate Cohomology 2021 Ragnar-Olaf Buchweitz
+ Homology of complexes over finite tensor categories 2024 Petter Andreas Bergh
+ Finite complexes with A(n)-free cohomology 1985 Stephen Α. Mitchell

Works That Cite This (1)

Action Title Year Authors
+ The Right Gorenstein Subcategory $$r{\cal G}({\cal C},{\cal D})$$ 2023 Zeng Hui Gao
Wan Wu