Wolff potential estimates for Cheeger p-harmonic functions

Type: Article

Publication Date: 2018-01-25

Citations: 8

DOI: https://doi.org/10.1007/s13348-018-0213-2

Locations

  • Collectanea mathematica - View

Similar Works

Action Title Year Authors
+ FOR HARMONIC FUNCTIONS. 2016 William A. Veech
+ Gradient estimates for p(x)-harmonic functions 2009 S. Challal
Abdeslem Lyaghfouri
+ Mean value properties for p-harmonic functions for higher dimensions 2023 Ishraq Alawamleh
+ Strichartz estimates for harmonic potential with time-decaying coefficient 2017 Masaki Kawamoto
Taisuke Yoneyama
+ Mean Value Theorems for Bicomplex Harmonic Functions 2023 Abdelkader Abouricha
Aiad El Gourari
Allal Ghanmi
+ MEAN VALUE THEOREMS FOR POLYHARMONIC FUNCTIONS 2016 James H. Bramble
+ Mean Value Theorems for Polyharmonic Functions 1966 James H. Bramble
L. E. Payne
+ Unbounded Harmonic Functions 2023 Steven P. Lalley
+ PDF Chat Mean-value characterization of pluriharmonic and separately harmonic functions 1996 Lev Aizenberg
Carlos A. Berenstein
L. Wertheim
+ Carleman Approximation by Harmonic Functions 1995 Stephen J. Gardiner
M. Goldstein
+ Mean Value Theorem for Polyharmonic Functions 1966 James H. Bramble
L. E. Payne
+ PDF Chat $$p-$$Harmonic Functions in the Upper Half-space 2023 Eduardo Abreu
Rubén Martı́n-Clemente
João Marcos do Ó
Everaldo S. Medeiros
+ Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals 2003 Jan Malý
+ Bounded Harmonic Functions 2023 Steven P. Lalley
+ Weyl type bounds for harmonic functions 1998 Tobias Colding
William P. Minicozzi
+ Positive harmonic functions 2002 E. Dynkin
+ Harmonic Functions 2018 Marín Marín
Andreas Öchsner
+ Lower bounds for subharmonic functions 1981 A. N. Fridman
+ The Harnack inequality for infinity-harmonic functions 1995 Peter Lindqvist
Juan J. Manfredi
+ PDF Chat Finely Harmonic Functions 1972 Bent Fuglede