MIDA: Multiple Imputation Using Denoising Autoencoders

Type: Book-Chapter

Publication Date: 2018-01-01

Citations: 219

DOI: https://doi.org/10.1007/978-3-319-93040-4_21

Locations

  • Lecture notes in computer science - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ rMIDAS: Multiple Imputation with Denoising Autoencoders 2020 Thomas Robinson
Ranjit Lall
+ Multiple Imputation Using Deep Denoising Autoencoders. 2017 Lovedeep Gondara
Ke Wang
+ MIDA: Multiple Imputation using Denoising Autoencoders 2017 Lovedeep Gondara
Ke Wang
+ Multiple Imputation with Denoising Autoencoders [R package rMIDAS version 0.3.0] 2021 Thomas Robinson
Ranjit Lall
+ PDF Chat Establishing strong imputation performance of a denoising autoencoder in a wide range of missing data problems 2019 Najmeh Abiri
Björn Linse
Patrik Edén
Mattias Ohlsson
+ PDF Chat mDAE : modified Denoising AutoEncoder for missing data imputation 2024 Mariette Dupuy
Marie Chavent
RĂ©mi Dubois
+ Incomplete data modeling based on alternate update of clustering and autoencoder for missing value imputation 2024 Xiaochen Lai
Zheng Zhang
Liyong Zhang
Wei Lu
Z. Li
+ DAEMA: Denoising Autoencoder with Mask Attention 2021 Simon Tihon
Muhammad Usama Javaid
Damien Fourure
Nicolas Posocco
Thomas Peel
+ DAEMA: Denoising Autoencoder with Mask Attention 2021 Simon Tihon
Muhammad Usama Javaid
Damien Fourure
Nicolas Posocco
Thomas Peel
+ Multiple Imputation with Denoising Autoencoder using Metamorphic Truth and Imputation Feedback 2020 Haw-minn Lu
Giancarlo Perrone
José Unpingco
+ Deep learning versus conventional methods for missing data imputation: A review and comparative study 2023 Yige Sun
Jing Li
Yifan Xu
Tingting Zhang
Xiaofeng Wang
+ Masked Autoencoder Transformer for Missing Data Imputation of PISA 2024 Guilherme Mendonça Freire
Mariana CĂșri
+ Multiple imputation through machine learning algorithms 2007 Theodore B. Trafali̇s
+ MIWAE: Deep Generative Modelling and Imputation of Incomplete Data 2018 Pierre‐Alexandre Mattei
Jes Frellsen
+ PDF Chat The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning 2021 Ranjit Lall
Thomas Robinson
+ Applying the MIDAS Touch: How to Handle Missing Values in Large and Complex Data 2020 Ranjit Lall
Thomas Robinson
+ missIWAE: Deep Generative Modelling and Imputation of Incomplete Data. 2018 Pierre‐Alexandre Mattei
Jes Frellsen
+ Generative adversarial learning for missing data imputation 2024 Xinyang Wang
Hongyu Chen
Jiayu Zhang
Jicong Fan
+ PDF Chat Multiple Imputation for Biomedical Data using Monte Carlo Dropout Autoencoders 2019 Kristian Miok
Dong Nguyen-Doan
Marko Robnik‐Ơikonja
Daniela Zaharie
+ Multiple Imputation for Biomedical Data using Monte Carlo Dropout Autoencoders 2020 Kristian Miok
Dong Nguyen-Doan
Marko Robnik‐Ơikonja
Daniela Zaharie

Works That Cite This (87)

Action Title Year Authors
+ Imputation of Missing Data in Materials Science through Nearest Neighbors and Iterative Predictions 2024 Chunhui Xie
Rui Li
Yunqi Li
Haibo Xie
Qibin Liu
+ Automatic Delta-Adjustment Method Applied to Missing Not At Random Imputation 2023 Ricardo Cardoso Pereira
Pedro Pereira Rodrigues
MĂĄrio A. T. Figueiredo
Pedro Henriques Abreu
+ Effects of single and multiple imputation strategies on addressing over-fitting issues caused by imbalanced data from various scenarios 2024 Jiaxi Yang
Yihan Wang
Ye Yang
Kai Ding
Chongning Na
Yao Yang
+ PDF Chat Deep Neural Networks and Tabular Data: A Survey 2022 Vadim Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
+ On the consistency of supervised learning with missing values 2024 Julie Josse
Jacob M. Chen
Nicolas Prost
Gaël Varoquaux
Erwan Scornet
+ The Effects of Data Imputation on Covariance and Inverse Covariance Matrix Estimation 2024 Tuan L. Vo
Quan Huu
Thu Nguyen
PĂ„l Halvorsen
Michael A. Riegler
Binh T. Nguyen
+ Transformers deep learning models for missing data imputation: an application of the ReMasker model on a psychometric scale 2024 Monica Casella
Nicola Milano
Pasquale Dolce
‎Davide Marocco
+ Estimating a new panel MSK dataset for comparative analyses of national absorptive capacity systems, economic growth, and development in low and middle income economies 2021 Muhammad Salar Khan
+ PDF Chat Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins? 2022 Jeremy Georges-Filteau
Elisa Cirillo
+ PDF Chat Multiple Imputation for Biomedical Data using Monte Carlo Dropout Autoencoders 2019 Kristian Miok
Dong Nguyen-Doan
Marko Robnik‐Ơikonja
Daniela Zaharie