Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Manipulating and Measuring Model Interpretability
Forough Poursabzi-Sangdeh
,
Daniel G. Goldstein
,
Jake M. Hofman
,
Jennifer Wortman Vaughan
,
Hanna Wallach
Type:
Preprint
Publication Date:
2018-02-21
Citations:
164
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Manipulating and Measuring Model Interpretability
2018
Forough Poursabzi-Sangdeh
Daniel G. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna Wallach
+
PDF
Chat
Manipulating and Measuring Model Interpretability
2021
Forough Poursabzi-Sangdeh
Daniel G. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna Wallach
+
Assessing the Local Interpretability of Machine Learning Models
2019
Dylan Slack
Sorelle A. Friedler
Carlos Scheidegger
Chitradeep Dutta Roy
+
Can Users Correctly Interpret Machine Learning Explanations and Simultaneously Identify Their Limitations?
2023
Yueqing Xuan
Edward Small
Kacper Sokol
Danula Hettiachchi
Mark Sanderson
+
The Promise and Peril of Human Evaluation for Model Interpretability
2017
Bernease Herman
+
The Promise and Peril of Human Evaluation for Model Interpretability
2017
Bernease Herman
+
"I had a solid theory before but it's falling apart": Polarizing Effects of Algorithmic Transparency
2018
Aaron Springer
Steve Whittaker
+
"I had a solid theory before but it's falling apart": Polarizing Effects of Algorithmic Transparency.
2018
Aaron Springer
Steve Whittaker
+
Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making
2021
Md Naimul Hoque
Klaus Mueller
+
Machine Explanations and Human Understanding
2022
Chacha Chen
Feng Shi
Amit Sharma
Chenhao Tan
+
PDF
Chat
Causal Interpretability for Machine Learning - Problems, Methods and Evaluation
2020
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
Adrienne Raglin
Huan Liu
+
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
2020
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
Adrienne Raglin
Huan Liu
+
PDF
Chat
Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs
2020
Sung-Soo Hong
Jessica Hullman
Enrico Bertini
+
Example and Feature importance-based Explanations for Black-box Machine Learning Models
2018
Ajaya Adhikari
David M. J. Tax
Riccardo Satta
Matthias Faeth
+
Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?
2020
Peter Hase
Mohit Bansal
+
How model accuracy and explanation fidelity influence user trust
2019
Andrea Papenmeier
Gwenn Englebienne
Christin Seifert
+
Let's Go to the Alien Zoo: Introducing an Experimental Framework to Study Usability of Counterfactual Explanations for Machine Learning
2022
Ulrike Kuhl
André Artelt
Barbara Hammer
+
Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability
2022
Lukas-Valentin Herm
Kai Heinrich
Jonas Wanner
Christian Janiesch
+
PDF
Chat
One Explanation Does Not Fit All: The Promise of Interactive Explanations for Machine Learning Transparency
2020
Kacper Sokol
Peter Flach
+
LEAFAGE: Example-based and Feature importance-based Explanationsfor Black-box ML models
2018
Ajaya Adhikari
David M. J. Tax
Riccardo Satta
Matthias Fath
Works That Cite This (103)
Action
Title
Year
Authors
+
PDF
Chat
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
2020
Q. Vera Liao
Daniel M. Gruen
Sarah Miller
+
PDF
Chat
Interpretable machine learning: Fundamental principles and 10 grand challenges
2022
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
+
Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
2020
Gagan Bansal
Tongshuang Wu
Joyce Zhou
Raymond Fok
Besmira Nushi
Ece Kamar
Marco Túlio Ribeiro
Daniel S. Weld
+
LEx: A Framework for Operationalising Layers of Machine Learning Explanations
2021
Ronal Singh
Upol Ehsan
Marc Cheong
Mark Riedl
Tim Miller
+
CrossCheck: Rapid, Reproducible, and Interpretable Model Evaluation
2020
Dustin Arendt
Zhuanyi Huang
Prasha Shrestha
Ellyn Ayton
Maria Glenski
Svitlana Volkova
+
Challenging common interpretability assumptions in feature attribution explanations
2020
Jonathan Dinu
Jeffrey P. Bigham
J. Zico Kolter
+
An Evaluation of the Human-Interpretability of Explanation
2019
Isaac Lage
Emily Chen
Jeffrey He
Menaka Narayanan
Been Kim
Sam Gershman
Finale Doshi‐Velez
+
Interpretable Question Answering on Knowledge Bases and Text
2019
Alona Sydorova
Nina Poerner
Benjamin Roth
+
A Review of Explainable Artificial Intelligence in Manufacturing.
2021
Georgios Sofianidis
Jože M. Rožanec
Dunja Mladenić
Dimosthenis Kyriazis
+
Counterfactual Explanations for Multivariate Time Series
2021
Emre Ateş
Burak Aksar
Vitus J. Leung
Ayse K. Coskun
Works Cited by This (29)
Action
Title
Year
Authors
+
Judgment under Uncertainty: Heuristics and Biases
1975
Amos Tversky
Daniel Kahneman
+
PDF
Chat
Fitting Linear Mixed-Effects Models Using<b>lme4</b>
2015
Douglas M. Bates
Martin Mächler
Benjamin M. Bolker
Steve Walker
+
PDF
Chat
A Mathematical Model for Interpretable Clinical Decision Support with Applications in Gynecology
2012
Vanya M. C. A. Van Belle
Ben Van Calster
D. Timmerman
T. Bourne
Cecilia Bottomley
L. Valentin
Patrick Neven
Sabine Van Huffel
Johan A. K. Suykens
Stephen Boyd
+
The robust beauty of improper linear models in decision making.
1979
Robyn M. Dawes
+
PDF
Chat
The Earth is spherical (p < 0.05): alternative methods of statistical inference
2000
Kim J. Vicente
Gerard Torenvliet
+
Scikit-learn: Machine Learning in Python
2012
Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
+
PDF
Chat
Visualizable and interpretable regression models with good prediction power
2007
Hyunjoong Kim
Wei‐Yin Loh
Yu‐Shan Shih
Probal Chaudhuri
+
PDF
Chat
Supersparse linear integer models for optimized medical scoring systems
2015
Berk Ustun
Cynthia Rudin
+
The Mythos of Model Interpretability
2016
Zachary C. Lipton
+
Simple rules for complex decisions
2017
Jongbin Jung
Connor Concannon
Ravi Shroff
Sharad Goel
Daniel G. Goldstein