Frobenius Heisenberg categorification

Type: Article

Publication Date: 2019-01-01

Citations: 14

DOI: https://doi.org/10.5802/alco.73

Abstract

We associate a graded monoidal supercategory ℋeis F,k to every graded Frobenius superalgebra F and integer k. These categories, which categorify a broad range of lattice Heisenberg algebras, recover many previously defined Heisenberg categories as special cases. In this way, the categories ℋeis F,k serve as a unifying and generalizing framework for Heisenberg categorification. Even in the case of previously defined Heisenberg categories, we obtain new, more efficient, presentations of these categories, based on an approach of Brundan. When k=0, our construction yields new versions of the affine oriented Brauer category depending on a graded Frobenius superalgebra.

Locations

  • Algebraic Combinatorics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF
  • Algebraic Combinatorics - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat A general approach to Heisenberg categorification via wreath product algebras 2016 Daniele Rosso
Alistair Savage
+ PDF Chat Foundations of Frobenius Heisenberg categories 2021 Jonathan Brundan
Alistair Savage
Ben Webster
+ Foundations of Frobenius Heisenberg categories 2020 Jonathan Brundan
Alistair Savage
Ben Webster
+ Decomposing Frobenius Heisenberg categories 2018 Raj Gandhi
+ Decomposing Frobenius Heisenberg categories 2018 Raj Gandhi
+ PDF Chat Quantum Frobenius Heisenberg categorification 2021 Jonathan Brundan
Alistair Savage
Ben Webster
+ Quantum Frobenius Heisenberg categorification 2020 Jonathan Brundan
Alistair Savage
Ben Webster
+ PDF Chat Affine oriented Frobenius Brauer categories 2022 Alexandra McSween
Alistair Savage
+ Affine oriented Frobenius Brauer categories 2021 Alexandra McSween
Alistair Savage
+ On the definition of Heisenberg category 2017 Jonathan Brundan
+ On the definition of Heisenberg category 2017 Jonathan Brundan
+ PDF Chat Affine Frobenius Brauer Categories 2024 Saima Samchuck-Schnarch
+ PDF Chat Frobenius nil-Hecke algebras 2021 Alistair Savage
John Trevor Stuart
+ PDF Chat Frobenius algebra objects in Temperley-Lieb categories at roots of unity 2024 J. A. Grant
Mathew Pugh
+ PDF Chat On the definition of Heisenberg category 2018 Jonathan Brundan
+ PDF Chat Decomposing Frobenius Heisenberg categories 2019 Raj Gandhi
+ The Heisenberg category of a category 2021 Ádám Gyenge
Clemens Koppensteiner
Timothy Logvinenko
+ PDF Chat Categorification and Heisenberg doubles arising from towers of algebras 2014 Alistair Savage
Oded Yacobi
+ Frobenius bimodules and flat-dominant dimensions 2019 Changchang Xi
+ Affine Brauer category and parabolic category $\mathcal O$ in types $B, C, D$ 2023 Hebing Rui
Linliang Song