On the importance of single directions for generalization

Type: Preprint

Publication Date: 2018-01-01

Citations: 202

DOI: https://doi.org/10.48550/arxiv.1803.06959

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On the importance of single directions for generalization 2018 Ari S. Morcos
David G. T. Barrett
Neil C. Rabinowitz
Matthew Botvinick
+ Weak and Strong Gradient Directions: Explaining Memorization, Generalization, and Hardness of Examples at Scale 2020 Piotr Zieliński
Shankar Krishnan
Satrajit Chatterjee
+ PDF Chat A separability-based approach to quantifying generalization: which layer is best? 2024 Luciano Dyballa
Evan Gerritz
Steven W. Zucker
+ Guillotine Regularization: Why removing layers is needed to improve generalization in Self-Supervised Learning 2022 Florian Bordes
Randall Balestriero
Quentin Garrido
Adrien Bardes
P. Vincent
+ Weak and Strong Gradient Directions: Explaining Memorization, Generalization, and Hardness of Examples at Scale 2021 Piotr Zieliński
Shankar Krishnan
Satrajit Chatterjee
+ PDF Chat Simplicity Bias of Two-Layer Networks beyond Linearly Separable Data 2024 Nikita Tsoy
Nikola Konstantinov
+ PDF Chat Deep Neural Network Models Trained With A Fixed Random Classifier Transfer Better Across Domains 2024 Hafiz Tiomoko Ali
Umberto Michieli
Ji Joong Moon
Daehyun Kim
Mete Özay
+ Deep Neural Network Models Trained with a Fixed Random Classifier Transfer Better Across Domains 2024 Hafiz Tiomoko Ali
Umberto Michieli
Ji Joong Moon
Daehyun Kim
Mete Özay
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
+ Accelerating Training of Deep Neural Networks with a Standardization Loss 2019 Jasmine Collins
Johannes Ballé
Jonathon Shlens
+ Beyond BatchNorm: Towards a Unified Understanding of Normalization in Deep Learning 2021 Ekdeep Singh Lubana
Robert P. Dick
Hidenori Tanaka
+ PDF Chat What Variables Affect Out-Of-Distribution Generalization in Pretrained Models? 2024 Md Yousuf Harun
Kyungbok Lee
Jhair Gallardo
Giri P. Krishnan
Christopher Kanan
+ PDF Chat Feature Contamination: Neural Networks Learn Uncorrelated Features and Fail to Generalize 2024 Tianren Zhang
Chujie Zhao
Guanyu Chen
Yizhou Jiang
Chen Feng
+ No Reason for No Supervision: Improved Generalization in Supervised Models 2022 Mert Bülent Sarıyıldız
Yannis Kalantidis
Karteek Alahari
Diane Larlus
+ Neuron with Steady Response Leads to Better Generalization 2021 Qiang Fu
Lun Du
Haitao Mao
Chen Xu
Wei Fang
Shi Han
Dongmei Zhang
+ Training Deep Networks from Zero to Hero: avoiding pitfalls and going beyond 2021 Moacir Antonelli Ponti
Fernando Pereira dos Santos
Leo Sampaio Ferraz Ribeiro
Gabriel B. Cavallari
+ Generalization in Neural Networks: A Broad Survey 2022 Chris Rohlfs
+ Beyond BatchNorm: Towards a General Understanding of Normalization in Deep Learning 2021 Ekdeep Singh Lubana
Robert P. Dick
Hidenori Tanaka
+ SAND-mask: An Enhanced Gradient Masking Strategy for the Discovery of Invariances in Domain Generalization 2021 Soroosh Shahtalebi
Jean-Christophe Gagnon-Audet
Touraj Laleh
Mojtaba Faramarzi
Kartik Ahuja
Irina Rish