Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds

Type: Article

Publication Date: 2020-03-19

Citations: 16

DOI: https://doi.org/10.2140/apde.2020.13.403

Abstract

The sharp Wolff-type decoupling estimates of Bourgain-Demeter are extended to the variable coefficient setting.These results are applied to obtain new sharp local smoothing estimates for wave equations on compact Riemannian manifolds, away from the endpoint regularity exponent.More generally, local smoothing estimates are established for a natural class of Fourier integral operators; at this level of generality the results are sharp in odd dimensions, both in terms of the regularity exponent and the Lebesgue exponent.

Locations

  • Analysis & PDE - View
  • arXiv (Cornell University) - View - PDF
  • Edinburgh Research Explorer (University of Edinburgh) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat On local smoothing estimates for wave equations 2025 Shengwen Gan
Shukun Wu
+ Improved variable coefficient square functions and local smoothing of Fourier integral operators 2019 Chuanwei Gao
Changxing Miao
Jianwei-Urbain Yang
+ Local smoothing and Hardy spaces for Fourier integral operators 2022 Jan Rozendaal
+ PDF Chat Local smoothing and Hardy spaces for Fourier integral operators 2021 Jan Rozendaal
+ PDF Chat A note on sharpness of the local Kato-smoothing property for dispersive wave equations 2017 Shu-Ming Sun
Emmanuel Trélat
Bing‐Yu Zhang
Ning Zhong
+ PDF Chat Sharp variation-norm estimates for oscillatory integrals related to Carleson’s theorem 2020 Shaoming Guo
Joris Roos
Po-Lam Yung
+ Subdyadic square functions and applications to weighted harmonic analysis 2016 David Beltran
Jonathan Bennett
+ Sharp local smoothing estimates for Fourier integral operators 2018 David Beltrán
Jonathan E. Hickman
Christopher D. Sogge
+ PDF Chat Sharp Local Smoothing Estimates for Fourier Integral Operators 2021 David Beltran
Jonathan Hickman
Christopher D. Sogge
+ Square function estimates and Local smoothing for Fourier Integral Operators 2020 Chuanwei Gao
Bochen Liu
Changxing Miao
Yakun Xi
+ Local smoothing and Hardy spaces for Fourier integral operators on manifolds 2022 Naijia Liu
Jan Rozendaal
Liang Song
Lixin Yan
+ PDF Chat Global Kato Type Smoothing Estimates via Local Ones for Dispersive Equations 2020 Jungjin Lee
+ PDF Chat Recent existence and regularity results for wave maps 1997 Michaël Struwe
+ Square function inequality for oscillatory integral operators satisfying homogeneous Carleson-Sjölin type conditions 2019 Chuanwei Gao
Changxing Miao
Jianwei-Urbain Yang
+ PDF Chat Square function estimates and local smoothing for Fourier integral operators 2023 Chuanwei Gao
Bochen Liu
Changxing Miao
Yakun Xi
+ Local smoothing and Hardy spaces for Fourier integral operators on manifolds 2023 Naijia Liu
Jan Rozendaal
Liang Song
Lixin Yan
+ Strichartz estimates for equations with structured Lipschitz coefficients 2022 Dorothee Frey
Robert Schippa
+ GLOBAL SMOOTHING PROPERTIES OF DISPERSIVE EQUATIONS WITH CONSTANT COEFFICIENTS 2003 Toshihiko Hoshiro
+ Improved local smoothing estimate for the wave equation in higher dimensions 2021 Chuanwei Gao
Bochen Liu
Changxing Miao
Yakun Xi
+ PDF Chat Improved local smoothing estimate for the wave equation in higher dimensions 2023 Chuanwei Gao
Bochen Liu
Changxing Miao
Yakun Xi