POSITIVE SOLUTIONS OF <i>Δu</i>+<i>u</i><sup>(<i>n</i>+2)/(<i>n</i>–2)</sup> = 0 ON CONTRACTIBLE DOMAINS

Type: Book-Chapter

Publication Date: 2017-12-28

Citations: 1

DOI: https://doi.org/10.1142/9789813220881_0015

Locations

  • Peking University series in mathematics - View

Similar Works

Action Title Year Authors
+ On solutions of δ<i>u</i>=<i>f</i>(<i>u</i>) 1957 Joachim Keller
+ <i>C</i><sup>1</sup>-Solutions of <i>x</i> = <i>f</i>(<i>x</i>’) Are Convex or Concave 1998 Gerd Herzog
+ On –δ<i>u</i> = <i>K</i>(<i>x</i>)<i>u</i><sup>5</sup> in ℝ<sup>3</sup> 1993 Yanyan Li
+ ON THE EQUATION Δ<i>u</i>+<i>k</i>(<i>x</i>)<i>e</i><sup><i>u</i></sup>= 0 1978 O A Oleĭnik
+ 80.34 On solutions of <i>m</i><sup>2</sup> + <i>n</i><sup>2</sup> = 1 + <i>l</i><sup>2</sup> 1996 Christopher Bradley
+ PDF Chat Isometries of<i>C</i><sup>(<i>n</i>)</sup>[0<i>,</i>1] 1981 Vijay Pathak
+ PDF Chat On some properties of solutions of Δ<i>ψ</i>+<i>A</i>(<i>r</i><sup>2</sup>)<i>X</i>∇<i>ψ</i>+<i>C</i>(<i>r</i><sup>2</sup>)<i>ψ</i>= 0 1964 Vojislav Marić
+ ON THE ELLIPTIC EQUATION Δ<i>u</i> + <i>Ku</i><sup>(<i>n</i>+2)/(<i>n</i>−2)</sup> = 0 AND RELATED TOPICS 2017 WEI-YUE DING
WEI-MING NI
+ A Class of Solutions of the Equation <i>σ</i> ( <i>n</i> ) = 2 <i>n</i> + <i>t</i> 1980 Neville Robbins
+ On the Solution of { <i>E</i> <sup>2</sup> + (λ <i> <sub>p</sub> </i> - 2) <i>E</i> + (1 - λ <i> <sub>p</sub> </i> - λ <sup>2</sup> <i>q</i> )} <i> <sup>m</sup> </i> <i>G</i> <i> <sub>n</sub> </i> = <i>n</i> <i> <sup>k</sup> </i> by Expansions and Operators 1983 H. N. Malik
+ Minimum Solutions to <i>x</i> <sup>2</sup> − <i>Dy</i> <sup>2</sup> = ± 1 1975 Gregory Wulczyn
+ Uniqueness of Positive Solutions of Δ u + f ( u )=0 in ℝ N , N ≦3 1998 Carmen Cortázar
Manuel Elgueta
Patricio Felmer
+ Elliptic systems on bounded domains in ℝ<sup> <i>n</i> </sup> 1995 Joseph Wloka
B. Rowley
B. Lawruk
+ On the Recursive Sequence<i>x</i><sup><i>n</i>+1</sup>= 2003 R. DeVault
Candace M. Kent
Witold Kosmala
+ Is there an <i>n</i> for which φ(<i>x</i>)=<i>n</i> has a Unique Solution? 1969 Victor Klee
+ <i>a<sup>b</sup></i> = <i>b<sup>a</sup></i>: the positive integer solution 1992 F. Gerrish
+ On Solving <i>C</i> <sub>n + 2</sub> = <i>C</i> <sub>n + 1</sub> + <i>C</i> <sub>n</sub> +n <sup>m</sup> by Expansions and Operators 1970 R. J. Weinshenk
V. E. Hoggatt
+ PDF Chat The convergence of nonnegative solutions for the family of problems −<i>Δ</i><sub><i>p</i></sub><i>u</i>=<i>λ</i>e<sup><i>u</i></sup>as<i>p</i>→<i>∞</i> 2017 Mihai Mihăilescu
Denisa Stancu‐Dumitru
Csaba Varga
+ The Solutions of <i>x</i><sup><i>y</i></sup> = <i>y</i><sup><i>x</i></sup>, <i>x</i>&gt;0, <i>y</i>&gt;0, <i>x</i>≠<i>y</i>, and their Graphical Representation 1931 H. L. Slobin
+ Proof That <i>x</i><sup>2</sup> – 3<i>y</i><sup>2</sup> = –1 Has No Integral Solutions 1963 C. D. Olds

Works Cited by This (0)

Action Title Year Authors