A quantitative inverse theorem for the $U^4$ norm over finite fields

Type: Preprint

Publication Date: 2017-01-01

Citations: 8

DOI: https://doi.org/10.48550/arxiv.1712.00241

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic 2011 Terence Tao
Tamar Ziegler
+ PDF Chat None 2011 Shachar Lovett
Roy Meshulam
Alex Samorodnitsky
+ The inverse conjecture for the Gowers norm over finite fields in low characteristic 2011 Terence Tao
Tamar Ziegler
+ Quantitative bounds in the inverse theorem for the Gowers $U^{s+1}$-norms over cyclic groups 2018 Freddie Manners
+ Quantitative bounds in the inverse theorem for the Gowers $U^{s+1}$-norms over cyclic groups 2018 Freddie Manners
+ The Turán-Kubilius inequality for integers without large prime factors. 1982 Krishnaswami Alladi
+ PDF Chat The inverse conjecture for the Gowers norm over finite fields via the correspondence principle 2010 Terence Tao
Tamar Ziegler
+ Primes in the Chebotarev density theorem for all number fields 2021 Habiba Kadiri
Peng‐Jie Wong
+ Primes in the Chebotarev density theorem for all number fields 2021 Habiba Kadiri
Peng‐Jie Wong
+ s-Frobenius Numbers: Optimal Lower Bound 2012 Iskander Aliev
Martin Henk
+ Narrow progressions in the primes 2014 Terence Tao
Tamar Ziegler
+ On the Littlewood problem modulo a prime 2006 Ben Green
Sergeĭ Konyagin
+ Littlewood Polynomials with Small $L^4$ Norm 2012 Jonathan Jedwab
Daniel Katz
Kai‐Uwe Schmidt
+ Littlewood Polynomials with Small $L^4$ Norm 2012 Jonathan Jedwab
Daniel J. Katz
Kai‐Uwe Schmidt
+ The polynomials $X^2+(Y^2+1)^2$ and $X^{2} + (Y^3+Z^3)^2$ also capture their primes 2021 Jori Merikoski
+ An inverse theorem for the Gowers U^3 norm 2005 Ben Green
Terence Tao
+ Preface 2014 Arne Winterhof
Chaoping Xing
+ The Lang-Weil bound 2015 Terence Tao
+ PDF Chat Primes of the form $p^2 + nq^2$ 2024 Ben Green
Mehtaab Sawhney
+ Frobenius and his Density theorem for primes 2003 B. Sury