Why do Solutions of the Maxwell-Boltzmann Equation Tend to be Gaussians? A Simple Answer

Type: Article

Publication Date: 2017-01-01

Citations: 0

DOI: https://doi.org/10.4171/dm/594

Abstract

The Maxwell-Boltzmann functional equation has recently attraction renewed interest since besides its importance in Boltzmann's kinetic theory of gases it also characterizes maximizers of certain bilinear estimates for solutions of the free Schrödinger equation. In this note we give a short and simple proof that, under some mild growth restrictions, any measurable complex-valued solution of the Maxwell-Boltzmann equation is a Gaussian. This covers most, if not all, of the applications.

Locations

  • Documenta Mathematica - View - PDF

Similar Works

Action Title Year Authors
+ Positive Gaussian Kernels also Have Gaussian Minimizers 2022 Franck Barthe
Paweł Wolff
+ PDF Chat Zero modes and Dirac-(logarithmic) Sobolev-type inequalities 2025 Marianna Chatzakou
Uwe Kähler
Michael Ruzhansky
+ Sharp Hardy uncertainty principle and gaussian profiles of covariant Schrödinger evolutions 2013 Biagio Cassano
Luca Fanelli
+ Sharp Hardy uncertainty principle and gaussian profiles of covariant Schrödinger evolutions 2014 Biagio Cassano
Luca Fanelli
+ PDF Chat Semi-classical limit of Schrödinger–Poisson equations in space dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>n</mml:mi><mml:mo>⩾</mml:mo><mml:mn>3</mml:mn></mml:math> 2006 Thomas Alazard
Rémi Carles
+ Characterization of sharp global Gaussian estimates for Schrödinger heat kernels 2016 Krzysztof Bogdan
Jacek Dziubański
Karol Szczypkowski
+ Operators with complex Gaussian kernels over Lebesgue spaces 2024 Maan Jeetendrasingh
González Benito J.
Negrín Emilio R.
+ Sharp Hardy uncertainty principle and gaussian profiles of covariant Schr\"odinger evolutions 2013 Biagio Cassano
Luca Fanelli
+ Characterization of sharp global Gaussian estimates for Schr\"odinger heat kernels 2016 Krzysztof Bogdan
Jacek Dziubański
Karol Szczypkowski
+ Linear dimension-free estimates in the embedding theorem for Schrödinger operators 2011 Oliver Dragičević
Alexander Volberg
+ Super-Gaussian Decay of Exponentials: A Sufficient Condition 2022 Benjamin H. Hinrichs
Daan W. Janssen
Jobst Ziebell
+ Lebesgue Spaces and Operators with Complex Gaussian Kernels 2024 E. R. Negrín
B. J. González
Jeetendrasingh Maan
+ Moment measures and stability for Gaussian inequalities 2018 A. V. Kolesnikov
Egor D. Kosov
+ Spectral inequality for Schrödinger equations with power growth potentials 2023 Jiuyi Zhu
Jinping Zhuge
+ Convexity of Gaussian measures 1998 В. И. Богачев
+ PDF Chat Gebelein inequality in a Hilbert space 2023 Marek Beśka
+ PDF Chat Heat kernel and Riesz transform of Schrödinger operators 2019 Baptiste Devyver
+ Logarithmic Sobolev Inequalities 2013 Stéphane Boucheron
Gábor Lugosi
Pascal Massart
+ PDF Chat Positive Solutions to Schrödinger’s Equation and the Exponential Integrability of the Balayage 2017 Michael Frazier
Igor E. Verbitsky
+ Operators with Complex Gaussian Kernels: Boundedness Properties 1995 E. R. Negrín

Works That Cite This (0)

Action Title Year Authors