Social sensing of floods in the UK

Type: Article

Publication Date: 2018-01-31

Citations: 96

DOI: https://doi.org/10.1371/journal.pone.0189327

Abstract

"Social sensing" is a form of crowd-sourcing that involves systematic analysis of digital communications to detect real-world events. Here we consider the use of social sensing for observing natural hazards. In particular, we present a case study that uses data from a popular social media platform (Twitter) to detect and locate flood events in the UK. In order to improve data quality we apply a number of filters (timezone, simple text filters and a naive Bayes `relevance' filter) to the data. We then use place names in the user profile and message text to infer the location of the tweets. These two steps remove most of the irrelevant tweets and yield orders of magnitude more located tweets than we have by relying on geo-tagged data. We demonstrate that high resolution social sensing of floods is feasible and we can produce high-quality historical and real-time maps of floods using Twitter.

Locations

  • PLoS ONE - View - PDF
  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • Open Research Exeter (University of Exeter) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Analysis of Mumbai Floods in recent Years with Crowdsourced Data 2023 Shrabani S. Tripathy
Sautrik Chaudhuri
Raghu Murtugudde
Vedant Mharte
D. D. G. Parmar
Manasi Pinto
P. E. Zope
Vishal Dixit
Subimal Ghosh
+ Floods impact dynamics quantified from big data sources 2018 David Pastor-Escuredo
Yolanda Torres
María Castaño Martínez
Pedro J. Zufiria
+ Floods impact dynamics quantified from big data sources 2018 David Pastor-Escuredo
Yolanda Torres
MarĂ­a MartĂ­nez
Pedro J. Zufiria
+ PDF Chat Social Media Alerts can Improve, but not Replace Hydrological Models for Forecasting Floods 2020 Valerio Lorini
Carlos Castillo
Domenico Nappo
Francesco Dottori
Peter Salamon
+ Social Media Alerts can Improve, but not Replace Hydrological Models for Forecasting Floods 2020 Valerio Lorini
Carlos Castillo
Domenico Nappo
Francesco Dottori
Peter Salamon
+ Analysis of Mumbai floods in recent years with crowdsourced data 2024 Shrabani S. Tripathy
Sautrik Chaudhuri
Raghu Murtugudde
Vedant Mhatre
D. D. G. Parmar
Manasi Pinto
P. E. Zope
Vishal Dixit
Subhankar Karmakar
Subimal Ghosh
+ Smart flood resilience: harnessing community-scale big data for predictive flood risk monitoring, rapid impact assessment, and situational awareness 2022 Faxi Yuan
Chao Fan
Hamed Farahmand
Natalie Coleman
Amir Esmalian
Cheng-Chun Lee
Flavia Ioana Patrascu
Cheng Zhang
Shangjia Dong
Ali Mostafavi
+ Smart Flood Resilience: Harnessing Community-Scale Big Data for Predictive Flood Risk Monitoring, Rapid Impact Assessment, and Situational Awareness 2021 Faxi Yuan
Chao Fan
Hamed Farahmand
Natalie Coleman
Amir Esmalian
Cheng-Chun Lee
Flavia Ioana Patrascu
Cheng Zhang
Shangjia Dong
Ali Mostafavi
+ PDF Chat Smart Flood Resilience: Harnessing Community-Scale Big Data for Predictive Flood Risk Monitoring, Rapid Impact Assessment, and Situational Awareness 2021 Faxi Yuan
Chao Fan
Hamed Farahmand
Natalie Coleman
Amir Esmalian
Cheng-Chun Lee
Flavia Ioana Patrascu
Cheng Zhang
Shangjia Dong
Ali Mostafavi
+ PDF Chat A Spatiotemporal Analysis of Participatory Sensing Data 'Tweets' and Extreme Climate Events Toward Real-Time Urban Risk Management 2015 Yoshiki Yamagata
Daisuke Murakami
Gareth W. Peters
Tomoko Matsui
+ Finding Relevant Flood Images on Twitter using Content-based Filters 2020 Björn Barz
Kai Schröter
Ann-Christin Kra
Joachim Denzler
+ Finding Relevant Flood Images on Twitter using Content-based Filters 2020 Björn Barz
Kai Schröter
Ann-Christin Kra
Joachim Denzler
+ PDF Chat FRIDZ: A Framework for Real-time Identification of Disaster Zones 2019 Abhisek Chowdhury
+ PDF Chat Mining social media to inform peatland fire and haze disaster management 2017 Mark Kibanov
Gerd Stumme
Imaduddin Amin
Jong Gun Lee
+ Vivid London: Assessing the resilience of urban vibrancy during the COVID-19 pandemic using social media data 2024 Meixu Chen
Yunzhe Liu
Zi Ye
Siqin Wang
Wenjing Zhang
+ PDF Chat Image-Based Social Sensing: Combining AI and the Crowd to Mine Policy-Adherence Indicators from Twitter 2021 Virginia Negri
Dario Scuratti
Stefano Agresti
Donya Rooein
Gabriele Scalia
Amudha Ravi Shankar
Jose Luis Fernandez-Marquez
Mark Carman
Barbara Pernici
+ Image-based Social Sensing: Combining AI and the Crowd to Mine Policy-Adherence Indicators from Twitter 2020 Virginia Negri
Dario Scuratti
Stefano Agresti
Donya Rooein
Gabriele Scalia
Amudha Ravi Shankar
Jose Luis Fernandez-Marquez
Mark Carman
Barbara Pernici
+ Computing flood probabilities using Twitter: application to the Houston urban area during Harvey 2019 Etienne Brangbour
Pierrick Bruneau
StĂ©phane Marchand‐Maillet
Renaud Hostache
Marco Chini
Patrick Matgen
Thomas Tamisier
+ Computing flood probabilities using Twitter: application to the Houston urban area during Harvey 2020 Etienne Brangbour
Pierrick Bruneau
StĂ©phane Marchand‐Maillet
Renaud Hostache
Marco Chini
Patrick Matgen
Thomas Tamisier
+ TriggerCit: Early Flood Alerting using Twitter and Geolocation -- a comparison with alternative sources 2022 Carlo Bono
Barbara Pernici
Jose Luis Fernandez-Marquez
Amudha Ravi Shankar
Mehmet Oğuz MĂŒlĂąyim
Edoardo Nemni