Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations

Type: Book

Publication Date: 2020-12-15

Citations: 61

DOI: https://doi.org/10.23943/princeton/9780691212425.001.0001

Abstract

One of the major outstanding questions about black holes is whether they remain stable when subject to small perturbations. An affirmative answer to this question would provide strong theoretical support for the physical reality of black holes. This book takes an important step toward solving the fundamental black hole stability problem in general relativity by establishing the stability of nonrotating black holes — or Schwarzschild spacetimes — under so-called polarized perturbations. This restriction ensures that the final state of evolution is itself a Schwarzschild space. Building on the remarkable advances made in the past fifteen years in establishing quantitative linear stability, the book introduces a series of new ideas to deal with the strongly nonlinear, covariant features of the Einstein equations. Most preeminent among them is the general covariant modulation (GCM) procedure that allows them to determine the center of mass frame and the mass of the final black hole state. Essential reading for mathematicians and physicists alike, the book introduces a rich theoretical framework relevant to situations such as the full setting of the Kerr stability conjecture.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • Princeton University Press eBooks - View

Similar Works

Action Title Year Authors
+ Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations 2017 Sergiù Klainerman
Jérémie Szeftel
+ PDF Chat Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations 2020 Jérémie Szeftel
Sergiù Klainerman
+ Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations 2020 Sergiù Klainerman
Jérémie Szeftel
+ Brief introduction to the nonlinear stability of Kerr 2022 Sergiù Klainerman
Jérémie Szeftel
+ Kerr stability for small angular momentum 2023 Sergiù Klainerman
Jérémie Szeftel
+ Kerr stability for small angular momentum 2021 Sergiù Klainerman
Jérémie Szeftel
+ Constructions of GCM spheres in perturbations of Kerr 2019 Sergiù Klainerman
Jérémie Szeftel
+ Constructions of GCM spheres in perturbations of Kerr 2019 Sergiù Klainerman
Jérémie Szeftel
+ A new gauge for gravitational perturbations of Kerr spacetimes I: The linearised theory 2022 Gabriele Benomio
+ PDF Chat Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case 2017 Julián M. Fernández Tío
Gustavo Dotti
+ Coupled gravitational and electromagnetic perturbations of Reissner-Nordstr\"om spacetime in a polarized setting 2017 Elena Giorgi
+ Coupled gravitational and electromagnetic perturbations of Reissner-Nordström spacetime in a polarized setting 2017 Elena E. Giorgi
+ PDF Chat Linear waves in the Kerr geometry: A mathematical voyage to black hole physics 2009 Felix Finster
Niky Kamran
Joel Smoller
Shing‐Tung Yau
+ The global nonlinear stability of Minkowski space for self-gravitating massive fields 2015 Philippe G. LeFloch
Yue Ma
+ The global nonlinear stability of Minkowski space for self-gravitating massive fields 2015 Philippe G. LeFloch
Yue Ma
+ On the linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge 2018 Thomas E. Johnson
+ PDF Chat Black hole nonmodal linear stability: Even perturbations in the Reissner-Nordström case 2020 Gustavo Dotti
Julián M. Fernández Tío
+ PDF Chat Linear stability of Schwarzschild spacetime: Decay of metric coefficients 2020 Pei-Ken Hung
Jordan Keller
Mu‐Tao Wang
+ A new gauge for gravitational perturbations of Kerr spacetimes II: The linear stability of Schwarzschild revisited 2022 Gabriele Benomio
+ The nonlinear stability of the Minkowski metric in general relativity 1989 Demetrios Christodoulou
Sergiù Klainerman