A Constructive Lower Bound on Szemerédi's Theorem

Type: Preprint

Publication Date: 2017-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1711.04183

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat ON A GENERALIZATION OF SZEMERÉDI'S THEOREM 2006 Ilya D. Shkredov
+ On a Generalization of Szemeredi's Theorem 2005 Ilya D. Shkredov
+ New bounds for Szemeredi's theorem, II: A new bound for $r_4(N)$ 2006 Ben Green
Terence Tao
+ Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions 2020 Thomas F. Bloom
Olof Sisask
+ New bounds for Szemerédi's theorem, III: A polylogarithmic bound for $r_4(N)$ 2017 Ben Green
Terence Tao
+ PDF Chat Sets without <i>k</i>‐term progressions can have many shorter progressions 2020 Jacob Fox
Cosmin Pohoata
+ PDF Chat On Erdős and Sárközy’s sequences with Property P 2016 Christian Elsholtz
Stefan Planitzer
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata
+ A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$ 2022 James Leng
+ PDF Chat Contributions to the Erdös-Szemerédi theory of sieved integers 1980 Mangala J Narlikar
K. Ramachandra
+ PDF Chat Approximate arithmetic structure in large sets of integers 2021 Jonathan M. Fraser
Han Yu
+ Sets without $k$-term progressions can have many shorter progressions 2019 Jacob Fox
Cosmin Pohoata
+ On a problem of Erdős, Nathanson and Sárközy 2019 Yong-Gao Chen
Ya-Li Li
+ Small sets which meet all the k(n)-term arithmetic progressions in the interval [1, n] 1989 Tom C. Brown
Allen R. Freedman
+ PDF Chat An Erdös-Kac theorem for integers without large prime factors 1987 Krishnaswami Alladi
+ The number of subsets of integers with no $k$-term arithmetic progression 2016 József Balogh
Hong Liu
Maryam Sharifzadeh
+ On Erdős and Sárközy's sequences with Property P 2016 Christian Elsholtz
Stefan Planitzer
+ PDF Chat Unique Sequences Containing No $k$-Term Arithmetic Progressions 2013 Tanbir Ahmed
Janusz Dybizbański
Hunter S. Snevily
+ PDF Chat A conjecture of Erdös in number theory 1976 R. R. Hall
+ Contributions to the Erdős’ conjecture on arithmetic progressions 2009 Roman Wituła
Damian Słota

Works That Cite This (0)

Action Title Year Authors