Deep Extreme Cut: From Extreme Points to Object Segmentation

Type: Article

Publication Date: 2018-06-01

Citations: 437

DOI: https://doi.org/10.1109/cvpr.2018.00071

Download PDF

Abstract

This paper explores the use of extreme points in an object (left-most, right-most, top, bottom pixels) as input to obtain precise object segmentation for images and videos. We do so by adding an extra channel to the image in the input of a convolutional neural network (CNN), which contains a Gaussian centered in each of the extreme points. The CNN learns to transform this information into a segmentation of an object that matches those extreme points. We demonstrate the usefulness of this approach for guided segmentation (grabcut-style), interactive segmentation, video object segmentation, and dense segmentation annotation. We show that we obtain the most precise results to date, also with less user input, in an extensive and varied selection of benchmarks and datasets. All our models and code are publicly available on http://www.vision.ee.ethz.ch/~cvlsegmentation/dextr/.

Locations

  • arXiv (Cornell University) - View - PDF
  • Lirias (KU Leuven) - View - PDF

Similar Works

Action Title Year Authors
+ Deep Extreme Cut: From Extreme Points to Object Segmentation 2017 Kevis-Kokitsi Maninis
Sergi Caelles
Jordi Pont-Tuset
Luc Van Gool
+ Deep Extreme Cut: From Extreme Points to Object Segmentation 2017 Kevis-Kokitsi Maninis
Sergi Caelles
Jordi Pont-Tuset
Luc Van Gool
+ FAIRS -- Soft Focus Generator and Attention for Robust Object Segmentation from Extreme Points 2020 Ahmed H. Shahin
Prateek Munjal
Ling Shao
Shadab Khan
+ FAIRS -- Soft Focus Generator and Attention for Robust Object Segmentation from Extreme Points 2020 Ahmed H. Shahin
Prateek Munjal
Ling Shao
Shadab Khan
+ A Comprehensive Review of Modern Object Segmentation Approaches 2022 Yuanbo Wang
Unaiza Ahsan
Hanyan Li
Matthew Hagen
+ Extreme clicking for efficient object annotation 2017 Dim P. Papadopoulos
Jasper Uijlings
Frank Keller
Vittorio Ferrari
+ PDF Chat Extreme Clicking for Efficient Object Annotation 2017 Dim P. Papadopoulos
Jasper Uijlings
Frank Keller
Vittorio Ferrari
+ PDF Chat A Comprehensive Review of Modern Object Segmentation Approaches 2022 Yuanbo Wang
Unaiza Ahsan
Hanyan Li
Matthew Hagen
+ PDF Chat Extreme Point Supervised Instance Segmentation 2024 Hyunjun Lee
Sehyun Hwang
Suha Kwak
+ InstanceCut: from Edges to Instances with MultiCut 2016 Alexander M. Kirillov
Evgeny Levinkov
Bjoern Andres
Bogdan Savchynskyy
Carsten Rother
+ InstanceCut: from Edges to Instances with MultiCut 2016 Alexander Kirillov
Evgeny Levinkov
Bjoern Andres
Bogdan Savchynskyy
Carsten Rother
+ PDF Chat InstanceCut: From Edges to Instances with MultiCut 2017 Alexander Kirillov
Evgeny Levinkov
Bjoern Andres
Bogdan Savchynskyy
Carsten Rother
+ Learning to segment from object sizes 2022 Denis Baručić
Jan Kybic
+ Boundary-Aware Segmentation Network for Mobile and Web Applications 2021 Xuebin Qin
Deng-Ping Fan
Chenyang Huang
Cyril Diagne
Zichen Vincent Zhang
AdriĂ  Cabeza Sant'Anna
Albert Miyer Suarez
Martin Jägersand
Ling Shao
+ DynaSeg: A deep dynamic fusion method for unsupervised image segmentation incorporating feature similarity and spatial continuity 2024 Boujemaa Guermazi
Riadh Ksantini
Naimul Khan
+ Enhanced Boundary Learning for Glass-like Object Segmentation 2021 Hao He
Xiangtai Li
Guangliang Cheng
Jianping Shi
Yunhai Tong
Gaofeng Meng
V. Prinet
Lubin Weng
+ PDF Chat Enhanced Boundary Learning for Glass-like Object Segmentation 2021 Hao He
Xiangtai Li
Guangliang Cheng
Jianping Shi
Yunhai Tong
Gaofeng Meng
V. Prinet
Lubin Weng
+ Highly Accurate Dichotomous Image Segmentation 2022 Xuebin Qin
Hang Dai
Xiaobin Hu
Deng-Ping Fan
Ling Shao
and Luc Van Gool
+ EOLO: Embedded Object Segmentation only Look Once 2020 Longfei Zeng
Mohammed Sabah
+ PDF Chat Unsupervised Segmentation in Real-World Images via Spelke Object Inference 2022 Honglin Chen
Rahul Venkatesh
Yoni Friedman
Jiajun Wu
Joshua B. Tenenbaum
Daniel Yamins
Daniel M. Bear

Works That Cite This (183)

Action Title Year Authors
+ PDF Chat Inter Extreme Points Geodesics for End-to-End Weakly Supervised Image Segmentation 2021 Reuben Dorent
Samuel Joutard
Jonathan Shapey
Aaron Kujawa
Marc Modat
SĂ©bastien Ourselin
Tom Vercauteren
+ PDF Chat Robotic Perception of Transparent Objects: A Review 2023 Jiaqi Jiang
Guanqun Cao
Jiankang Deng
Thanh-Toan Do
Shan Luo
+ PDF Chat Rethinking interactive image segmentation: Feature space annotation 2022 JordĂŁo Bragantini
Alexandre X. FalcĂŁo
Laurent Najman
+ LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking 2019 Guanghan Ning
Heng Huang
+ PDF Chat CANet: Class-Agnostic Segmentation Networks With Iterative Refinement and Attentive Few-Shot Learning 2019 Chi Zhang
Guosheng Lin
Fayao Liu
Rui Yao
Chunhua Shen
+ PDF Chat EasyLabel: A Semi-Automatic Pixel-wise Object Annotation Tool for Creating Robotic RGB-D Datasets 2019 Markus Suchi
Timothy Patten
David Fischinger
Markus Vincze
+ Bottom-up Object Detection by Grouping Extreme and Center Points 2019 Xingyi Zhou
Jiacheng Zhuo
Philipp Krähenbühl
+ PDF Chat MODS—A USV-Oriented Object Detection and Obstacle Segmentation Benchmark 2021 Borja Bovcon
Jon MuhoviÄŤ
Duško Vranac
Dean MozetiÄŤ
Janez Perš
Matej Kristan
+ NuClick: From Clicks in the Nuclei to Nuclear Boundaries 2019 Mostafa Jahanifar
Navid Alemi Koohbabnani
Nasir Rajpoot
+ NuClick: A Deep Learning Framework for Interactive Segmentation of Microscopy Images 2020 Navid Alemi Koohbanani
Mostafa Jahanifar
Neda Zamani Tajadin
Nasir Rajpoot

Works Cited by This (25)

Action Title Year Authors
+ PDF Chat BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation 2015 Jifeng Dai
Kaiming He
Jian Sun
+ PDF Chat Fully convolutional networks for semantic segmentation 2015 Jonathan Long
Evan Shelhamer
Trevor Darrell
+ Fully Convolutional Multi-Class Multiple Instance Learning 2014 Deepak Pathak
Evan Shelhamer
Jonathan Long
Trevor Darrell
+ PDF Chat What Makes for Effective Detection Proposals? 2015 Jan Hosang
Rodrigo Benenson
Piotr Dollár
Bernt Schiele
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
+ PDF Chat Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation 2016 Jordi Pont-Tuset
Pablo Arbeláez
Jonathan T. Barron
Ferran Marqués
Jitendra Malik
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ PDF Chat Deep Interactive Object Selection 2016 Ning Xu
Brian Price
Scott Cohen
Shuicheng Yan
Thomas S. Huang
+ PDF Chat ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation 2016 Di Lin
Jifeng Dai
Jiaya Jia
Kaiming He
Jian Sun
+ PDF Chat DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 2017 Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Murphy
Alan Yuille