Equidistribution of Eisenstein series on geodesic segments

Type: Article

Publication Date: 2018-10-26

Citations: 3

DOI: https://doi.org/10.1016/j.aim.2018.10.030

Locations

  • Advances in Mathematics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The $L^2$ restriction of the Eisenstein series to a geodesic segment 2015 Matthew P. Young
+ Eisenstein Series and Breakdown of Semiclassical Correspondence 2017 Shimon Brooks
+ PDF Chat Subconvexity Implies Effective Quantum Unique Ergodicity for Hecke-Maa{\ss} Cusp Forms on $\mathrm{SL}_2(\mathbb{Z}) \backslash \mathrm{SL}_2(\mathbb{R})$ 2024 Ankit Bisain
Peter Humphries
Andrei Mandelshtam
Noah Walsh
Xun Wang
+ Quantum ergodicity of Eisenstein functions at complex energies 2011 Semyon Dyatlov
+ PDF Chat Quantum ergodicity for pseudo-Laplacians 2021 Elie Studnia
+ Quantum ergodicity for pseudo-Laplacians 2019 Elie Studnia
+ Quantum ergodicity for pseudo-Laplacians 2019 Elie Studnia
+ PDF Chat Equidistribution in shrinking sets and $$L^4$$ L 4 -norm bounds for automorphic forms 2018 Peter Humphries
+ PDF Chat Cusp excursion in hyperbolic manifolds and singularity of harmonic measure 2021 Anja Randecker
Giulio Tiozzo
+ Quantitative quantum ergodicity and the nodal domains of Maass-Hecke cusp forms 2013 Junehyuk Jung
+ Cusp excursion in hyperbolic manifolds and singularity of harmonic measure 2019 Anja Randecker
Giulio Tiozzo
+ Cusp excursion in hyperbolic manifolds and singularity of harmonic measure 2019 Anja Randecker
Giulio Tiozzo
+ Selberg trace formulae and equidistribution theorems for closed geodesics and Laplace eigenfunctions: finite area surfaces 1992 Steven Zelditch
+ Quantum ergodicity for shrinking balls in arithmetic hyperbolic manifolds 2020 Dimitrios Chatzakos
Robin Frot
Nicole Raulf
+ Quantum ergodicity for shrinking balls in arithmetic hyperbolic manifolds 2020 Dimitrios Chatzakos
Robin Frot
Nicole Raulf
+ PDF Chat Cusp excursions of random geodesics in Weil–Petersson type metrics 2022 Vaibhav Gadre
Carlos Matheus
+ Excursions to the cusps for geometrically finite hyperbolic orbifolds, and equidistribution of closed geodesics in regular covers 2020 Ron Mor
+ Excursions to the cusps for geometrically finite hyperbolic orbifolds, and equidistribution of closed geodesics in regular covers 2020 Ron Mor
+ PDF Chat Geodesic cusp excursions and metric diophantine approximation 2009 Andrew Haas
+ Geodesic cusp excursions and metric diophantine approximation 2007 Andrew Haas