Entanglement entropy for (3+1)-dimensional topological order with excitations

Type: Article

Publication Date: 2018-02-26

Citations: 32

DOI: https://doi.org/10.1103/physrevb.97.085147

Abstract

Excitations in (3+1)-dimensional [(3+1)D] topologically ordered phases have very rich structures. (3+1)D topological phases support both pointlike and stringlike excitations, and in particular the loop (closed string) excitations may admit knotted and linked structures. In this work, we ask the following question: How do different types of topological excitations contribute to the entanglement entropy or, alternatively, can we use the entanglement entropy to detect the structure of excitations, and further obtain the information of the underlying topological order? We are mainly interested in (3+1)D topological order that can be realized in Dijkgraaf-Witten (DW) gauge theories, which are labeled by a finite group $G$ and its group 4-cocycle $\ensuremath{\omega}\ensuremath{\in}{\mathcal{H}}^{4}[G;\text{U}(1)]$ up to group automorphisms. We find that each topological excitation contributes a universal constant $ln{d}_{i}$ to the entanglement entropy, where ${d}_{i}$ is the quantum dimension that depends on both the structure of the excitation and the data $(G,\phantom{\rule{0.16em}{0ex}}\ensuremath{\omega})$. The entanglement entropy of the excitations of the linked/unlinked topology can capture different information of the DW theory $(G,\phantom{\rule{0.16em}{0ex}}\ensuremath{\omega})$. In particular, the entanglement entropy introduced by Hopf-link loop excitations can distinguish certain group 4-cocycles $\ensuremath{\omega}$ from the others.

Locations

  • Physical review. B./Physical review. B - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Twisted Lattice Gauge Theory: Membrane Operators, Three-loop Braiding and Topological Charge 2024 Joe Huxford
Dung Xuan Nguyen
Yong Baek Kim
+ PDF Chat Twisted lattice gauge theory: Membrane operators, three-loop braiding, and topological charge 2024 Joe Huxford
Dung Xuan Nguyen
Yong Baek Kim
+ PDF Chat Classification of symmetry enriched topological phases with exactly solvable models 2013 Andrej MesaroĆĄ
Ying Ran
+ Symmetries in topological tensor network states: classification, construction and detection 2019 José Garre-Rubio
+ PDF Chat Twisted gauge theory model of topological phases in three dimensions 2015 Yidun Wan
Juven Wang
Huan He
+ PDF Chat Twisted quantum double model of topological phases in two dimensions 2013 Yuting Hu
Yidun Wan
Yong-Shi Wu
+ PDF Chat Edge theory approach to topological entanglement entropy, mutual information, and entanglement negativity in Chern-Simons theories 2016 Xueda Wen
Shunji Matsuura
Shinsei Ryu
+ PDF Chat Fractionalizing global symmetry on looplike topological excitations 2022 Shang-Qiang Ning
Zheng-Xin Liu
Peng Ye
+ Modular transformations and topological orders in two dimensions 2013 Fangzhou Liu
Zhenghan Wang
Yi‐Zhuang You
Xiao-Gang Wen
+ Anomaly of $(2+1)$-Dimensional Symmetry-Enriched Topological Order from $(3+1)$-Dimensional Topological Quantum Field Theory 2022 Weicheng Ye
Liujun Zou
+ PDF Chat Anomaly of $(2+1)$-dimensional symmetry-enriched topological order from $(3+1)$-dimensional topological quantum field theory 2023 Weicheng Ye
Liujun Zou
+ PDF Chat A theory of 2+1D bosonic topological orders 2015 Xiao-Gang Wen
+ PDF Chat Generalized cluster states from Hopf algebras: non-invertible symmetry and Hopf tensor network representation 2024 Zhian Jia
+ PDF Chat Towards a classification of mixed-state topological orders in two dimensions 2024 Tyler D. Ellison
Meng Cheng
+ Topological gauge theory, symmetry fractionalization, and classification of symmetry-enriched topological phases in three dimensions 2018 Shang-Qiang Ning
Zheng-Xin Liu
Peng Ye
+ Crossing with the circle in Dijkgraaf-Witten theory and applications to topological phases of matter 2021 Alex Bullivant
Clement Delcamp
+ PDF Chat Crossing with the circle in Dijkgraaf–Witten theory and applications to topological phases of matter 2022 Alex Bullivant
Clement Delcamp
+ PDF Chat Classification of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo mathvariant="bold" stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo mathvariant="bold" stretchy="false">)</mml:mo><mml:mi mathvariant="normal">D</mml:mi></mml:mrow></mml:math> Bosonic Topological Orders: The Case When Pointlike Excitations Are All Bosons 2018 Tian Lan
Liang Kong
Xiao-Gang Wen
+ PDF Chat Intrinsic Topological Entanglement Entropy and the Strong Subadditivity 2024 Chih-Yu Lo
Po-Yao Chang
+ Symmetry-enriched topological order from partially gauging symmetry-protected topologically ordered states assisted by measurements 2023 Yabo Li
Hiroki Sukeno
Aswin Parayil Mana
Hendrik Poulsen Nautrup
Tzu-Chieh Wei

Works Cited by This (87)

Action Title Year Authors
+ PDF Chat Complete classification of one-dimensional gapped quantum phases in interacting spin systems 2011 Xie Chen
Zheng‐Cheng Gu
Xiao-Gang Wen
+ PDF Chat Symmetry-protected topological orders of one-dimensional spin systems with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>+</mml:mo><mml:mi>T</mml:mi></mml:mrow></mml:math>symmetry 2011 Zheng-Xin Liu
Xie Chen
Xiao-Gang Wen
+ PDF Chat Trace index and spectral flow in the entanglement spectrum of topological insulators 2011 A. Alexandradinata
Taylor L. Hughes
B. Andrei Bernevig
+ Lectures on Topological Quantum Field Theory 1993 Daniel S. Freed
+ PDF Chat Gapped quantum phases for theS=1spin chain withD2hsymmetry 2011 Zheng-Xin Liu
Min Liu
Xiao-Gang Wen
+ PDF Chat Loop braiding statistics in exactly soluble three-dimensional lattice models 2015 Chien-Hung Lin
Michael Levin
+ PDF Chat Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders 2013 Xiao-Gang Wen
+ PDF Chat Classification of Interacting Electronic Topological Insulators in Three Dimensions 2014 Chong Wang
Andrew C. Potter
T. Senthil
+ PDF Chat Anomalous Symmetry Fractionalization and Surface Topological Order 2015 Xie Chen
F. J. Burnell
Ashvin Vishwanath
Lukasz Fidkowski
+ PDF Chat Chiral symmetry on the edge of two-dimensional symmetry protected topological phases 2012 Xie Chen
Xiao-Gang Wen