On the sharp upper bound related to the weak Muckenhoupt–Wheeden conjecture

Type: Article

Publication Date: 2020-09-12

Citations: 16

DOI: https://doi.org/10.2140/apde.2020.13.1939

Abstract

We construct an example showing that the upper bound $[w]_{A_1}\log({\rm{e}}+[w]_{A_1})$ for the $L^1(w)\to L^{1,\infty}(w)$ norm of the Hilbert transform cannot be improved in general.

Locations

  • Analysis & PDE - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Fourier inequality with Ap and weak-L1 weight 1993 Paolo Heiniger
+ Sharp A1 Bounds for Calderón-Zygmund Operators and the Relationship with a Problem of Muckenhoupt and Wheeden 2008 Andrei K. Lerner
Sheldy Ombrosi
Carlos Pérez
+ Muckenhoupt-Wheeden conjectures for sparse operators 2016 Cong Hoang
Kabe Moen
+ Muckenhoupt-Wheeden conjectures in higher dimensions 2013 Alberto Criado
Fernando Soria
+ PDF Chat Supplementary Data and Remarks Concerning a Hardy-Littlewood Conjecture 1963 Daniel Shanks
+ PDF Chat Best bounds for the Hilbert transform on $L^p(\mathbb{R}^1)$: A corrigendum 2015 Loukas Grafakos
Thomas Savage
+ Muckenhoupt-Wheeden conjectures in higher dimensions 2013 Alberto Criado
Fernando Soria
+ PDF Chat Muckenhoupt–Wheeden conjectures for sparse operators 2017 Cong Hoang
Kabe Moen
+ PDF Chat Sharp weighted norm estimates beyond Calder\'on-Zygmund theory 2016 Frédéric Bernicot
Dorothee Frey
Stefanie Petermichl
+ PDF Chat On weighted norm inequalities for the Carleson and Walsh-Carleson operator 2014 Francesco Di Plinio
Andrei K. Lerner
+ The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic 2007 Stefanie Petermichl
+ PDF Chat $A_1$ bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden 2009 Andrei K. Lerner
Sheldy Ombrosi
Carlos Pérez
+ A second alternative approach for the study of the Muckenhoupt class $A_1(\mathbb{R})$ 2017 Eleftherios N. Nikolidakis
+ A second alternative approach for the study of the Muckenhoupt class $A_1(\mathbb{R})$ 2017 Eleftherios N. Nikolidakis
+ PDF Chat A UNIFORM INEQUALITY FOR THE FINITE HILBERT TRANSFORM IN WEIGHTED LEBESQUE SPACES 1988 Elías Wegert
Lothar ν. Wolfersdorf
+ Sharp estimates for the commutator of the Hilbert transform on weighted Lebesgue spaces 2009 Dae‐Won Chung
+ PDF Chat Characterization of the Weak-Type Boundedness of the Hilbert Transform on Weighted Lorentz Spaces 2013 Elona Agora
Marı́a J. Carro
Javier Soria
+ PDF Chat Best bounds for the Hilbert transform on $L^p(\Bbb R^1)$ 1997 Loukas Grafakos
+ A Strengthened Hardy-Hilbert Type Inequality 2006 Yang Bi-cheng
+ An application of the Hardy–Littlewood conjecture 2016 JinHua Fei