Subgroup growth in some pro-$p$ groups

Type: Article

Publication Date: 2001-08-29

Citations: 7

DOI: https://doi.org/10.1090/s0002-9939-01-06099-3

Abstract

For a group $G$ let $a_{n}(G)$ be the number of subgroups of index $n$ and let $b_{n}(G)$ be the number of normal subgroups of index $n$. We show that $a_{p^{k}}(SL_{2}^{1}(\mathbb {F}_{p}[[t]])) \le p^{k(k+5)/2}$ for $p>2$. If $\Lambda =\mathbb {F}_{p}[[t]]$ and $p$ does not divide $d$ or if $\Lambda =\mathbb {Z}_{p}$ and $p \ne 2$ or $d \ne 2$, we show that for all $k$ sufficiently large $b_{p^{k}}(SL_{d}^{1}(\Lambda ))=b_{p^{k+d^{2}-1}}(SL_{d}^{1}(\Lambda ))$. On the other hand if $\Lambda =\mathbb {F}_{p}[[t]]$ and $p$ divides $d$, then $b_{n}(SL_{d}^{1}(\Lambda ))$ is not even bounded as a function of $n$.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Subgroup Growth in pro-p Groups 2000 Avinoam Mann
+ PDF Chat BRANCH GROUPS, ORBIT GROWTH, AND SUBGROUP GROWTH TYPES FOR PRO- GROUPS 2020 Yiftach Barnea
Jan‐Christoph Schlage‐Puchta
+ Branch groups, orbit growth, and subgroup growth types for pro-$p$ groups 2016 Yiftach Barnea
Jan‐Christoph Schlage‐Puchta
+ Branch groups and new types of subgroup growth for pro-$p$ groups 2016 Yiftach Barnea
Jan‐Christoph Schlage‐Puchta
+ Pro- p groups with linear subgroup growth 2003 Benjamin Klopsch
+ Large normal subgroup growth and large characteristic subgroup growth 2017 Yiftach Barnea
Jan‐Christoph Schlage‐Puchta
+ Large normal subgroup growth and large characteristic subgroup growth 2017 Yiftach Barnea
Jan‐Christoph Schlage‐Puchta
+ PDF Chat Finite Groups with Pro-Normal Subgroups 1969 T. A. Peng
+ Subgroup Growth in Some Profinite Chevalley Groups 2015 Inna Capdeboscq
Karina Kirkina
Dmitriy Rumynin
+ Subgroup Growth in Some Profinite Chevalley Groups 2015 Inna Capdeboscq
Karina Kirkina
Dmitriy Rumynin
+ Quasi-p-Large Subgroups of Abelian Groups 1982 K. Benabdallah
Kin-ya Honda
+ Existence of normal subgroups in finite p-groups 2006 George Glauberman
+ A $p$-group with positive Rank Gradient 2011 Jan‐Christoph Schlage‐Puchta
+ A $p$-group with positive Rank Gradient 2011 Jan‐Christoph Schlage‐Puchta
+ PDF Chat Subgroup growth in some profinite Chevalley groups 2017 Inna Capdeboscq
Karina Kirkina
Dmitriy Rumynin
+ Normal Subgroup Growth of Linear Groups: the (G2; F4;E8)-Theorem 2011 Michael Larsen
Alexander Lubotzky
+ Normal Subgroups of Free Pro - ${\cal C}$ Groups 2010 Luis Ribes
Pavel Zalesskii
+ Finite {$p$}-groups with few normal subgroups 2000 Gheorghe Silberberg
+ PDF Chat On $\mathrm{K}$-$\mathbb{P}_{t}$-subnormal subgroups of finite groups and related formations 2024 A. F. VASIL'EV
Т. И. Васильева
+ Some Examples in the Theory of Subgroup Growth 2005 Thomas W. MĂźller
Jan‐Christoph Schlage‐Puchta