Dimensional crossover in the quasi-one-dimensional superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Tl</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Mo</mml:mi><mml:mn>6</mml:mn></mml:msub><mml:msub><mml:mi>Se</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>

Type: Article

Publication Date: 2018-08-14

Citations: 9

DOI: https://doi.org/10.1103/physrevb.98.054507

Abstract

Long-range order in quasi-one-dimensional (q1D) arrays of superconducting nanowires is established via a dimensional crossover from a fluctuating 1D regime to a phase-coherent 3D ground state. If a homogeneous crystalline superconductor exhibits sufficiently high uniaxial anisotropy, a similar 1D$\rightarrow$3D crossover has been predicted to occur, provided that single-particle hopping transverse to the 1D axis is absent in the normal state. Here we present magnetic penetration depth and electrical transport data in single crystals of q1D Tl$_2$Mo$_6$Se$_6$, which reveal a 1D$\rightarrow$3D superconducting dimensional crossover. Both experimental techniques uncover multiple energy scales within the superconducting transition, which describe a sequence of fluctuating regimes. As the temperature is reduced below $T_{ons}=$~6.7~K, 1D pairing fluctuations are replaced by 1D phase slips below $T_p\sim$~5.9~K. These give way to 3D phase fluctuations below $T_{ab}=$~4.9~K, prior to dimensional crossover at $T_{x2}\sim$~4.4~K. The electrical resistivity below $T_{ab}$ is quantitatively consistent with the establishment of phase coherence through gradual binding of Josephson vortex strings to form 3D loops. An anomalously low superfluid density persist down to $\sim$3~K before rising steeply --- in agreement with a theoretical model for crossovers in q1D superconductors, and suggesting that a small population of unbound, weakly-pinned vortices survives below the crossover. The observation of a dimensional crossover within the superconducting state has important consequences for the low-temperature normal state in Tl$_2$Mo$_6$Se$_6$ and similar q1D metals, which may exhibit one-dimensional behavior over far greater temperature ranges than band structure calculations suggest.

Locations

  • Physical review. B./Physical review. B - View - PDF
  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DR-NTU (Nanyang Technological University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Thermodynamic anomaly above the superconducting critical temperature in the quasi-one-dimensional superconductor<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ta</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi>Pd</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>16</mml:mn></mml:msub></mml:mrow></mml:math> 2017 Toni Helm
Felix Flicker
Robert Kealhofer
Philip J. W. Moll
Ian Hayes
Nicholas Breznay
Z. Li
Steven G. Louie
Q. R. Zhang
Luis Balicas
+ PDF Chat Two-dimensional phase-fluctuating superconductivity in bulk crystalline <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>NdO</mml:mi><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="normal">F</mml:mi><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>BiS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> 2024 C. S. Chen
J. KĆ¼spert
I. Biało
Jens Mueller
K. W. Chen
M. Y. Zou
D. G. Mazzone
D. Bucher
Šš. Tanaka
Oleh Ivashko
+ PDF Chat Superconducting transitions of intrinsic arrays of weakly coupled one-dimensional superconducting chains: the case of the extreme quasi-1D superconductor Tl<sub>2</sub>Mo<sub>6</sub>Se<sub>6</sub> 2011 B. Bergk
A. P. Petrović
Zhe Wang
Yu Wang
D. Salloum
P. Gougeon
M. Potel
Rolf Lortz
+ PDF Chat Sequential superconductorā€“Bose insulatorā€“Fermi insulator phase transitions in quasi-two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ī±</mml:mi></mml:math> -WSi 2018 Xiaofu Zhang
A. Schilling
+ PDF Chat Reentrant Phase Coherence in Superconducting Nanowire Composites 2016 Diane Ansermet
A. P. Petrović
Shikun He
D. Chernyshov
Moritz Hoesch
Diala Salloum
P. Gougeon
M. Potel
Lilia Boeri
O. K. Andersen
+ PDF Chat Quantitative analysis of quantum phase slips in superconducting Mo<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>76</mml:mn></mml:msub></mml:math>Ge<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>24</mml:mn></mml:msub></mml:math>nanowires revealed by switching-current statistics 2012 Thomas Aref
Alex Levchenko
Victor Vakaryuk
Alexey Bezryadin
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>c</mml:mi></mml:math> -axis transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">UTe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> : Evidence of three-dimensional conductivity component 2022 Yun Suk Eo
Shouzheng Liu
Shanta Saha
Hyunsoo Kim
Sheng Ran
Jarryd A. Horn
Halyna Hodovanets
John Collini
Tristin Metz
Wesley Fuhrman
+ PDF Chat First-order phase transition and tricritical point in multiband<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>U</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>London superconductors 2016 Karl Sellin
Egor Babaev
+ Flux-charge duality and quantum phase fluctuations in one-dimensional superconductors 2012 Andrew J. Kerman
+ Fluxā€“charge duality and topological quantum phase fluctuations in quasi-one-dimensional superconductors 2013 Andrew J. Kerman
+ PDF Chat Pressure Induced Nonmonotonic Evolution of Superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>6</mml:mn><mml:mi>R</mml:mi><mml:mtext>āˆ’</mml:mtext><mml:msub><mml:mrow><mml:mi>TaS</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> with a Natural Bulk Van der Waals Heterostructure 2024 Shao Peng Wang
Yuyan Han
Sutao Sun
Shuyang Wang
Chao An
Chunhua Chen
Lili Zhang
Yonghui Zhou
Jian Zhou
Zhaorong Yang
+ Dimensional crossover in quasi-one-dimensional and high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>superconductors 2000 E. W. Carlson
Dror Orgad
Steven A. Kivelson
V. J. Emery
+ PDF Chat Dissipation in quasi-one-dimensional superconducting single-crystal<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">Sn</mml:mi></mml:mrow></mml:mrow></mml:math>nanowires 2005 Mingliang Tian
Jinguo Wang
James S. Kurtz
Ying Liu
Moses H. W. Chan
Theresa S. Mayer
Thomas E. Mallouk
+ PDF Chat One-Dimensional Nature of Superconductivity at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>LaAlO</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mi>SrTiO</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> Interface 2018 Yunā€Yi Pai
Hyungwoo Lee
Jung-Woo Lee
Anil Annadi
Guanglei Cheng
Shicheng Lu
Michelle Tomczyk
Mengchen Huang
Changā€Beom Eom
Patrick Irvin
+ PDF Chat One-dimensional resistive states in quasi-two-dimensional superconductors: Experiment and theory 2007 Matthew Bell
Andrei Sergeev
Vladimir Mitin
F. Bird
A. Verevkin
G. N. Gol'Tsman
+ PDF Chat Hidden Quasi-One-Dimensional Superconductivity in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>RuO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> 2010 S. Raghu
A. Kapitulnik
Steven A. Kivelson
+ PDF Chat Dimensional crossover in quantum critical metallic magnets 2008 Markus Garst
Lars Fritz
Achim Rosch
Matthias Vojta
+ PDF Chat Mapping the Phase Diagram of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="normal">Y</mml:mi><mml:mi>Ba</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Cu</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mrow><mml:mn>7</mml:mn><mml:mo>āˆ’</mml:mo><mml:mi>Ī“</mml:mi></mml:mrow></mml:msub></mml:math> Nanowire Through Electromigration 2022 Edoardo Trabaldo
Alexei Kalaboukhov
Riccardo Arpaia
Eric Wahlberg
Š¤. Š›Š¾Š¼Š±Š°Ń€Š“Šø
Thilo Bauch
+ Fluctuation, insulation and superconductivity: the pressure-dependent phase-diagram of Rb$_2$Mo$_6$Se$_6$ 2023 Yongsheng Zhao
A. P. Petrović
P. Gougeon
Philippe Le Gall
Kai Chen
Wenge Yang
Moritz Hoesch
+ PDF Chat Directional Field-Induced Metallization of Quasi-One-Dimensional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Li</mml:mi><mml:mn>0.9</mml:mn></mml:msub><mml:msub><mml:mi>Mo</mml:mi><mml:mn>6</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="bold">O</mml:mi><mml:mn>17</mml:mn></mml:msub></mml:math> 2009 Xiaofeng Xu
A. F. Bangura
James G. Analytis
J. D. Fletcher
M. M. J. French
Nic Shannon
Jian He
S. Zhang
David Mandrus
Rongying Jin

Works That Cite This (6)

Action Title Year Authors
+ PDF Chat Anisotropic Transport and Quantum Oscillations in the Quasi-One-Dimensional TaNiTe<sub>5</sub>: Evidence for the Nontrivial Band Topology 2020 Chunqiang Xu
Yi Liu
Ping-Gen Cai
Bin Li
Wenā€He Jiao
Yunlong Li
Junyi Zhang
Wei Zhou
Bin Qian
Xuefan Jiang
+ PDF Chat Large upper critical fields and dimensionality crossover of superconductivity in the infinite-layer nickelate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:mrow><mml:mn>0.8</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>Sr</mml:mi><mml:mrow><mml:mn>0.2</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>NiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> 2023 Wei Wei
Wenjie Sun
Yue Sun
Yongqiang Pan
Gangjian Jin
Feng Yang
Yueying Li
Zengwei Zhu
Yuefeng Nie
Zhixiang Shi
+ PDF Chat Superconductivity in Ag implanted Au thin film 2020 M. K. Dalai
Braj Bhusan Singh
Salila Kumar Sethy
S.K. Sahoo
Subhankar Bedanta
+ PDF Chat Pressure engineering of the Dirac fermions in quasi-one-dimensional Tl<sub>2</sub>Mo<sub>6</sub>Se<sub>6</sub> 2020 Ziwan Song
Bin Li
Chunqiang Xu
Sixuan Wu
Bin Qian
Tong Chen
Pabitra Kumar Biswasāƒ°
Xiaofeng Xu
Jian Sun
+ PDF Chat Accessing phase slip events in Nb meander wires 2021 Deepika Sawle
Sudhir Husale
Sachin Yadav
Bikash Gajar
V. P. S. Awana
Sangeeta Sahoo
+ Accessing Phase Slip Events in Nb Meander Wires 2021 Deepika Sawle
Sudhir Husale
Sachin Yadav
Bikash Gajar
V. P. S. Awana
Sangeeta Sahoo

Works Cited by This (40)

Action Title Year Authors
+ PDF Chat Evolution of superconducting order in Pr(Os<sub>1āˆ’<i>x</i></sub>Ru<sub><i>x</i></sub>)<sub>4</sub>Sb<sub>12</sub> 2005 Elbert E. M. Chia
D. Vandervelde
M. B. Salamon
Daisuke Kikuchi
Hitoshi Sugawara
Hideyuki Sato
+ PDF Chat Fluctuation spectroscopy of disordered two-dimensional superconductors 2011 Andreas Glatz
A. A. Varlamov
V. M. Vinokur
+ PDF Chat Evolution from BCS to Berezinskii-Kosterlitz-Thouless Superfluidity in One-Dimensional Optical Lattices 2009 M. Iskin
Carlos A. R. SĆ” de Melo
+ Bosonization and Strongly Correlated Systems 1999 Alexander O. Gogolin
A. A. Nersesyan
A. M. Tsvelik
+ PDF Chat 1D to 3D dimensional crossover in the superconducting transition of the quasi-one-dimensional carbide superconductor Sc<sub>3</sub>CoC<sub>4</sub> 2015 Mingquan He
Chi Ho Wong
Dian Shi
Pok Lam Tse
Ernstā€Wilhelm Scheidt
Georg Eickerling
Wolfgang Scherer
Ping Sheng
Rolf Lortz
+ PDF Chat Meissner-London state in superconductors of rectangular cross section in a perpendicular magnetic field 2000 R. Prozorov
R. W. Giannetta
A. Carrington
F. M. Araujo-Moreira
+ Existence of Long-Range Order in One and Two Dimensions 1967 P. C. Hohenberg
+ PDF Chat The gap amplification at a shape resonance in a superlattice of quantum stripes: A mechanism for high Tc 1996 Andrea Perali
A. Bianconi
Alessandra Lanzara
N. L. Saini
+ Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models 1966 N. David Mermin
Hermannā€Josef Wagner
+ PDF Chat Spin Excitations in Fluctuating Stripe Phases of Doped Cuprate Superconductors 2006 Matthias Vojta
Thomas Vojta
Ribhu K. Kaul