Persistence Probability of Random Weyl Polynomial

Type: Article

Publication Date: 2019-04-19

Citations: 1

DOI: https://doi.org/10.1007/s10955-019-02298-0

Locations

  • Journal of Statistical Physics - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Real Roots of Random Polynomials and Zero Crossing Properties of Diffusion Equation 2008 Grégory Schehr
Satya N. Majumdar
+ PDF Chat Universality of Persistence of Random Polynomials 2024 Promit Ghosal
Sumit Mukherjee
+ Real zeros of random polynomials: Scaling and universality 2003 Xiaojun Di
+ PDF Chat Concentration of the number of real roots of random polynomials 2024 Ander Aguirre
Hoi H. Nguyen
Jingheng Wang
+ PDF Chat Non universality for the variance of the number of real roots of random trigonometric polynomials 2018 Vlad Bally
Lucia Caramellino
Guillaume Poly
+ Average number of real roots of random polynomials defined by the increments of fractional Brownian motion 2017 Safari Mukeru
+ Persistence Exponents for Gaussian Random Fields of Fractional Brownian Motion Type 2018 G. M. Molchan
+ Extrema of log-correlated random variables: Principles and Examples 2016 Louis‐Pierre Arguin
+ Lyapounov exponents and law of large numbers for random walk in random environment with holding times 2009 Mingzhi Mao
Dong Han
+ On random polynomials with an intermediate number of real roots 2023 Marcus Michelen
Sean O’Rourke
+ PDF Chat Persistence Probabilities and Exponents 2015 Frank Aurzada
Thomas Simon
+ Real roots of random polynomials with coefficients of polynomial growth and non-zero means: a comparison principle and applications 2019 Yen Q.
+ PDF Chat Scaling Limits of Linear Random Fields on $${\mathbb {Z}}^2$$ with General Dependence Axis 2020 Vytautė Pilipauskaitė
Донатас Сургайлис
+ PDF Chat Statistics of the Number of Zero Crossings: From Random Polynomials to the Diffusion Equation 2007 Grégory Schehr
Satya N. Majumdar
+ Random walk with persistence 1987 I. Claes
J. van den Brand
+ The persistence exponents of Gaussian random fields connected by the Lamperti transform 2021 G. M. Molchan
+ Random polynomials: central limit theorems for the real roots 2019 Oanh Kieu Nguyen
Van Vu
+ Random polynomials: central limit theorems for the real roots 2019 Hoi H. Nguyen
Van Vu
+ On the average number of real zeros of random hyperbolic polynomials 2006 K. Farahmand
M. Sambandham
R Bozeman
+ PDF Chat The Persistence Exponents of Gaussian Random Fields Connected by the Lamperti Transform 2022 G. M. Molchan