Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Hierarchical Implicit Models and Likelihood-Free Variational Inference
Dustin Tran
,
Rajesh Ranganath
,
David M. Blei
Type:
Preprint
Publication Date:
2017-02-28
Citations:
90
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Hierarchical Implicit Models and Likelihood-Free Variational Inference
2017
Dustin Tran
Rajesh Ranganath
David M. Blei
+
Adversarial Variational Optimization of Non-Differentiable Simulators
2017
Gilles Louppe
Joeri Hermans
K. Cranmer
+
Adversarial Variational Optimization of Non-Differentiable Simulators
2017
Gilles Louppe
Joeri Hermans
K. Cranmer
+
Hierarchical Variational Models
2015
Rajesh Ranganath
Dustin Tran
David M. Blei
+
Hierarchical Variational Models
2015
Rajesh Ranganath
Dustin Tran
David M. Blei
+
Asymptotically exact conditional inference in deep generative models and differentiable simulators
2016
Matthew M. Graham
Amos Storkey
+
PDF
Chat
Variational Autoencoders for Efficient Simulation-Based Inference
2024
Mayank Nautiyal
Andrey Shternshis
Andreas Hellander
Prashant Singh
+
Automatic Differentiation Variational Inference
2016
Alp Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
+
Automatic Differentiation Variational Inference
2016
Alp Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
+
Abstraction of Markov Population Dynamics via Generative Adversarial Nets
2021
Francesca Cairoli
Ginevra Carbone
Luca Bortolussi
+
Abstraction of Markov Population Dynamics via Generative Adversarial Nets
2021
Francesca Cairoli
Ginevra Carbone
Luca Bortolussi
+
Asymptotically exact inference in likelihood-free models
2016
Matthew M. Graham
Amos Storkey
+
Two Methods For Wild Variational Inference
2016
Qiang Liu
Yihao Feng
+
Variational methods for simulation-based inference
2022
Manuel Glöckler
Michael Deistler
Jakob H. Macke
+
PDF
Chat
Predictive variational inference: Learn the predictively optimal posterior distribution
2024
Jinlin Lai
Yuling Yao
+
Generative Flow Networks for Discrete Probabilistic Modeling
2022
Dinghuai Zhang
Nikolay Malkin
Zhen Liu
Alexandra Volokhova
Aaron Courville
Yoshua Bengio
+
Learning Deep-Latent Hierarchies by Stacking Wasserstein Autoencoders
2020
Benoit Gaujac
Ilya Feige
David Barber
+
PDF
Chat
Generative Bayesian Modeling with Implicit Priors
2024
Luna Fazio
Maximilian Scholz
Paul‐Christian Bürkner
+
A Theory of Independent Mechanisms for Extrapolation in Generative Models
2020
Michel Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
+
A theory of independent mechanisms for extrapolation in generative models
2020
Michel Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
Works That Cite This (73)
Action
Title
Year
Authors
+
PDF
Chat
OpenGAN: Open Set Generative Adversarial Networks
2021
Luke Ditria
Benjamin Meyer
Tom Drummond
+
PDF
Chat
MPCC: Matching Priors and Conditionals for Clustering
2020
Nicolás Astorga
P. Huijse
Pavlos Protopapas
P. A. Estévez
+
Discriminator Rejection Sampling
2018
Samaneh Azadi
Catherine Olsson
Trevor Darrell
Ian Goodfellow
Augustus Odena
+
Wasserstein Variational Inference
2018
Luca Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
Eric Maris
Marcel van Gerven
+
Consistency Regularization for Generative Adversarial Networks.
2019
Han Zhang
Zizhao Zhang
Augustus Odena
Honglak Lee
+
A Contemporary Overview of Probabilistic Latent Variable Models
2017
Rick Farouni
+
Capturing the diversity of biological tuning curves using generative adversarial networks.
2017
Takafumi Arakaki
G. Barello
Yashar Ahmadian
+
MadMiner: Machine learning-based inference for particle physics
2019
Johann Brehmer
Felix Kling
Irina Espejo
K. Cranmer
+
Likelihood-free inference with an improved cross-entropy estimator
2018
Markus Stoye
Johann Brehmer
Gilles Louppe
Juan Pavez
K. Cranmer
+
Self-Attention Generative Adversarial Networks
2018
Han Zhang
Ian Goodfellow
Dimitris Metaxas
Augustus Odena
Works Cited by This (33)
Action
Title
Year
Authors
+
Monte Carlo Methods of Inference for Implicit Statistical Models
1984
Peter J. Diggle
Richard J. Gratton
+
Learning Stochastic Recurrent Networks
2014
Justin Bayer
Christian Osendorfer
+
Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
2014
Tim Salimans
Diederik P. Kingma
Max Welling
+
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
2014
Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
+
The Probability of Heads
1986
Joseph B. Keller
+
Statistical inference for stochastic simulation models - theory and application
2011
Florian Härtig
Justin M. Calabrese
Björn Reineking
Thorsten Wiegand
Andreas Huth
+
PDF
Chat
Approximate Bayesian computational methods
2011
Jean‐Michel Marin
Pierre Pudlo
Christian P. Robert
Robin Ryder
+
Copula variational inference
2015
Dustin Tran
David M. Blei
Edoardo M. Airoldi
+
Stochastic variational inference
2013
Matthew D. Hoffman
David M. Blei
Chong Wang
John Paisley
+
Approximate Bayesian Computation in Evolution and Ecology
2010
Mark Beaumont