Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Integration Methods and Optimization Algorithms
Damien Scieur
,
Vincent Roulet
,
Francis Bach
,
Alexandre dâAspremont
Type:
Article
Publication Date:
2017-01-01
Citations:
32
View Publication
Share
Locations
Neural Information Processing Systems -
View
Similar Works
Action
Title
Year
Authors
+
Integration Methods and Accelerated Optimization Algorithms
2017
Damien Scieur
Vincent Roulet
Francis Bach
Alexandre dâAspremont
+
Comparative analysis of accelerated gradient algorithms for convex optimization: high and super resolution ODE approach
2024
Samir Adly
HĂ©dy Attouch
Jalal Fadili
+
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
2018
Bin Shi
Simon S. Du
Michael I. Jordan
Weijie Su
+
Accelerated First-Order Methods: Differential Equations and Lyapunov Functions
2019
Jonathan W. Siegel
+
Accelerated First-Order Methods: Differential Equations and Lyapunov Functions
2019
Jonathan W. Siegel
+
A simpler approach to accelerated optimization: iterative averaging meets optimism
2020
Pooria Joulani
Anant Raj
Andrås György
Csaba SzepesvĂĄri
+
PDF
Chat
Accelerated optimization algorithms and ordinary differential equations: the convex non Euclidean case
2024
Paul Dobson
J. M. SanzâSerna
Konstantinos C. Zygalakis
+
Gradient Flows and Accelerated Proximal Splitting Methods.
2019
Guilherme França
Daniel P. Robinson
René Vidal
+
Novel Optimization Theories and Implementations in Numerical Methods
2013
Yingxu Wang
John Nielsen
Vassil S. Dimitrov
+
Acceleration via Symplectic Discretization of High-Resolution Differential Equations
2019
Bin Shi
Simon S. Du
Weijie Su
Michael I. Jordan
+
Distributed accelerated optimization algorithms: Insights from an ODE
2020
Ruijuan Chen
Tao Yang
Tianyou Chai
+
PDF
Chat
Understanding the acceleration phenomenon via high-resolution differential equations
2021
Bin Shi
Simon S. Du
Michael I. Jordan
Weijie Su
+
Acceleration via Symplectic Discretization of High-Resolution Differential Equations
2019
Bin Shi
Simon S. Du
Weijie Su
Michael I. Jordan
+
A Differential Equation for Modeling NesterovĂąâŹâąs Accelerated Gradient Method: Theory and Insights
2014
Weijie Su
Stephen Boyd
Emmanuel J. CandĂšs
+
A Contraction Theory Approach to Optimization Algorithms from Acceleration Flows.
2021
Pedro CisnerosâVelarde
Francesco Bullo
+
A Contraction Theory Approach to Optimization Algorithms from Acceleration Flows
2021
Pedro CisnerosâVelarde
Francesco Bullo
+
PDF
Chat
Acceleration Methods
2021
Alexandre dâAspremont
Damien Scieur
Adrien Taylor
+
Revisiting the Role of Euler Numerical Integration on Acceleration and Stability in Convex Optimization
2021
Peiyuan Zhang
Antonio Orvieto
Hadi Daneshmand
Thomas Hofmann
Roy S. Smith
+
PDF
Chat
Implicit Runge-Kutta Methods for Accelerated Unconstrained Convex Optimization
2020
Ruijuan Chen
Xiuting Li
+
Acceleration Methods
2021
Alexandre dâAspremont
Damien Scieur
Adrien Taylor
Works That Cite This (27)
Action
Title
Year
Authors
+
PDF
Chat
Efficient first-order methods for convex minimization: a constructive approach
2019
Yoel Drori
Adrien Taylor
+
Factorization Approach for Low-complexity Matrix Completion Problems: Exponential Number of Spurious Solutions and Failure of Gradient Methods.
2021
Baturalp Yalçın
Haixiang Zhang
Javad Lavaei
Somayeh Sojoudi
+
PDF
Chat
On the Absence of Spurious Local Trajectories in Time-Varying Nonconvex Optimization
2021
Salar Fattahi
CĂ©dric Josz
Yuhao Ding
Reza Mohammadi
Javad Lavaei
Somayeh Sojoudi
+
PDF
Chat
On dissipative symplectic integration with applications to gradient-based optimization
2021
Guilherme França
Michael I. Jordan
René Vidal
+
A Dynamical Systems Perspective on Nesterov Acceleration
2019
Michael Muehlebach
Michael I. Jordan
+
The connections between Lyapunov functions for some optimization algorithms and differential equations
2020
J. M. SanzâSerna
Konstantinos C. Zygalakis
+
Penalized Langevin dynamics with vanishing penalty for smooth and log-concave targets
2020
Avetik Karagulyan
Arnak S. Dalalyan
+
Explicit Stabilised Gradient Descent for Faster Strongly Convex Optimisation
2018
Armin Eftekhari
Bart Vandereycken
Gilles Vilmart
Konstantinos C. Zygalakis
+
Accelerated Gradient Methods with Memory
2018
Ross Drummond
Stephen Duncan
+
PDF
Chat
Bregman ItohâAbe Methods for Sparse Optimisation
2020
Martin Benning
Erlend S. Riis
CarolaâBibiane Schönlieb
Works Cited by This (10)
Action
Title
Year
Authors
+
Lectures on Modern Convex Optimization
2001
Aharon BenâTal
Arkadi Nemirovski
+
PDF
Chat
Universal gradient methods for convex optimization problems
2014
Yu. Nesterov
+
Some methods of speeding up the convergence of iteration methods
1964
B. T. Polyak
+
An Introduction to Numerical Analysis
1990
F. S.
Kendall Atkinson
+
Mirror descent and nonlinear projected subgradient methods for convex optimization
2003
Amir Beck
Marc Teboulle
+
Gradient methods for minimizing composite objective function
2007
Yu. Nesterov
+
A differential equation for modeling Nesterov's accelerated gradient method: theory and insights
2016
Weijie Su
Stephen Boyd
Emmanuel J. CandĂšs
+
PDF
Chat
A variational perspective on accelerated methods in optimization
2016
Andre Wibisono
Ashia C. Wilson
Michael I. Jordan
+
PDF
Chat
Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints
2016
Laurent Lessard
Benjamin Recht
Andrew Packard
+
Introductory Lectures on Convex Optimization: A Basic Course
2014
Đź Đ ĐĐ”ŃŃĐ”ŃĐŸĐČ