Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schr\"odinger equation on $\mathbb{R}^3$

Type: Preprint

Publication Date: 2017-09-06

Citations: 8

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb{R}^3$ 2017 Árpåd Bényi
Tadahiro Oh
Oana Pocovnicu
+ PDF Chat Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ³ 2019 ÁrpĂĄd BĂ©nyi
Tadahiro Oh
Oana Pocovnicu
+ PDF Chat Random data theory for the cubic fourth-order nonlinear Schrödinger equation 2020 Van Duong Dinh
+ Higher order expansion for the probabilistic local well-posedness theory for a cubic nonlinear Schrödinger equation 2024 Jean-Baptiste Castéras
Juraj Földes
Gennady Uraltsev
+ PDF Chat Probabilistic well-posedness of generalized cubic nonlinear Schr\"odinger equations with strong dispersion using higher order expansions 2024 Jean-Baptiste Castéras
Juraj Földes
Itamar Oliveira
Gennady Uraltsev
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schr\"odinger equation 2018 Benjamin Dodson
Jonas LĂŒhrmann
Dana Mendelson
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation 2018 Benjamin Dodson
Jonas LĂŒhrmann
Dana Mendelson
+ Random data theory for the cubic fourth-order nonlinear Schrödinger equation 2020 Van Duong Dinh
+ Almost sure well-posedness and scattering of the 3D cubic nonlinear Schrödinger equation 2021 Jia Shen
Avy Soffer
Yifei Wu
+ On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb R^d$, $d \geq 3$ 2014 Árpåd Bényi
Tadahiro Oh
Oana Pocovnicu
+ Almost sure local well-posedness for cubic nonlinear Schrodinger equation with higher order operators 2022 Jean‐Baptiste Casteras
Juraj Földes
Gennady Uraltsev
+ Scattering for the cubic Schrödinger equation in 3D with randomized radial initial data 2022 Nicolas Camps
+ On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb R^d$, $d \geq 3$ 2014 Árpåd Bényi
Tadahiro Oh
Oana Pocovnicu
+ PDF Chat The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities 2020 Shuai Zhang
Shaopeng Xu
+ PDF Chat Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L2(T) 2012 J. Colliander
Tadahiro Oh
+ PDF Chat Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation 2020 Kihoon Seong
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation 2019 Benjamin Dodson
Jonas LĂŒhrmann
Dana Mendelson
+ PDF Chat Almost Sure Well-Posedness and Scattering of the 3D Cubic Nonlinear Schrödinger Equation 2022 Jia Shen
Avy Soffer
Yifei Wu
+ PDF Chat Almost Sure Global Well-posedness for the Fourth-order nonlinear Schrodinger Equation with Large Initial Data 2024 Mingjuan Chen
Shuai Zhang
+ Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data 2021 Martin Spitz