Type: Article
Publication Date: 2009-01-01
Citations: 11
DOI: https://doi.org/10.46298/hrj.2009.164
We discuss the mean values of the Riemann zeta-function $\zeta(s)$, and analyze upper and lower bounds for $$\int_T^{T+H} \vert\zeta(\frac{1}{2}+it)\vert^{2k}\,dt~~~~~~(k\in\mathbb{N}~{\rm fixed,}~1<\!\!< H \leq T).$$ In particular, the author's new upper bound for the above integral under the Riemann hypothesis is presented.