Some local-convexity theorems for the zeta-function-like analytic functions. III

Type: Other

Publication Date: 1998-01-01

Citations: 5

DOI: https://doi.org/10.1090/conm/210/02800

Abstract

In this paper we investigate lower bounds for $$I(\sigma)= \int^H_{-H}\vert f(\sigma+it_0+iv)\vert^kdv,$$ where $f(s)$ is analytic for $s=\sigma+it$ in $\mathcal{R}=\{a\leq\sigma\leq b, t_0-H\leq t\leq t_0+H\}$ with $\vert f(s)\vert\leq M$ for $s\in\mathcal{R}$. Our method rests on a convexity technique, involving averaging with the exponential function. We prove a general lower bound result for $I(\sigma)$ and give an application concerning the Riemann zeta-function $\zeta(s)$. We also use our methods to prove that large values of $\vert\zeta(s)\vert$ are ``rare'' in a certain sense.

Locations

  • Contemporary mathematics - American Mathematical Society - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Some local-convexity theorems for the zeta-function-like analytic functions 1988 R. Balasubramanian
K. Ramachandra
+ PDF Chat Some local convexity theorems for the zeta-function-like analytic functions II. 1997 R. Balasubramanian
K. Ramachandra
+ Explicit bounds for the Riemann zeta function and a new zero-free region 2023 Chiara Bellotti
+ On Large Values of $|\zeta(\sigma+it)|$. 2021 Zikang Dong
Bin Wei
+ On the Local Theory of Certain Global Zeta Integrals and Related Problems 2018 Fangyang Tian
+ Some monotonicity properties and inequalities for $\Gamma$ and $\zeta$ - functions 2010 Valmir Krasniqi
Toufik Mansour
Armend Sh. Shabani
+ Explicit zero-free regions for the Riemann zeta-function 2022 Michael J. Mossinghoff
Timothy S. Trudgian
Andrew Yang
+ A new upper bound for \(|\zeta(1+it)|\) 2014 Timothy S. Trudgian
+ AN INTRODUCTION TO THE THEORY OF LOCAL ZETA FUNCTIONS (AMS/IP Studies in Advanced Mathematics 14) <i>By</i> J<scp>UN-ICHI</scp> I<scp>GUSA</scp>: 232 pp., US$45.00 <scp>ISBN</scp> 0-8218-2015-X (American Mathematical Society, Providence, RI, 2000). 2001 Marcus du Sautoy
+ An Explicit Upper Bound for $|\zeta(1+it)|$ 2020 Dhir Patel
+ Monotonicity Properties of the Riemann Zeta Function 2011 Horst Alzer
+ PDF Chat Logarithmic Convexity of Area Integral Means for Analytic Functions 2014 Chunjie Wang
Kehe Zhu
+ Convexity and the Riemann ζ-function 1998 George Csordås
+ On Large Values of $|ζ(σ+{\rm i}t)|$ 2021 Zikang Dong
Bin Wei
+ Explicit $L^2$ bounds for the Riemann $\zeta$ function 2019 Daniele Dona
H. A. Helfgott
Sebastian Zuniga Alterman
+ PDF Chat Bounding <i>S<sub>n</sub></i>(<i>t</i>) on the Riemann hypothesis 2017 Emanuel Carneiro
Andrés Chirre
+ PDF Chat Bulk universality of general ÎČ-ensembles with non-convex potential 2012 Paul Bourgade
László ErdƑs
Horng‐Tzer Yau
+ Analytic properties of the zeta function and <i>L</i>-functions 2006 Hugh L. Montgomery
R. C. Vaughan
+ Logarithmic convexity of integral means for analytic functions 2011 Chunjie Wang
Kehe Zhu
+ PDF Chat A remark on $\zeta(1+it).$ 1987 K. Ramachandra