The resolution of the bounded <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup></mml:math> curvature conjecture in general relativity

Type: Article

Publication Date: 2015-05-04

Citations: 0

DOI: https://doi.org/10.5802/slsedp.65

Abstract

This paper reports on the recent proof of the bounded L 2 curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the L 2 -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.

Locations

  • Séminaire Laurent Schwartz — EDP et applications - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The resolution of the bounded L 2 curvature conjecture in general relativity 2016 Sergiù Klainerman
Igor Rodnianski
Jérémie Szeftel
+ PDF Chat On the Bounded L2 Curvature Conjecture 2014 Jérémie Szeftel
+ PDF Chat Around the bounded <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup></mml:math> curvature conjecture in general relativity 2010 Sergiù Klainerman
Igor Rodnianski
Jérémie Szeftel
+ The resolution of the bounded L2 curvature conjecture in general relativity 2014 Sergiù Klainerman
Igor Rodnianski
Jérémie Szeftel
+ PDF Chat The Localised Bounded $$L^2$$-Curvature Theorem 2019 Stefan Czimek
+ Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 3) 2014 Jérémie Szeftel
Fanny Bastien
+ Jérémie Szeftel - The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4) 2014 Jérémie Szeftel
Fanny Bastien
+ Jérémie Szeftel - The resolution of the bounded L2 curvature conjecture in General Relativity (Part 1) 2014 Jérémie Szeftel
Fanny Bastien
+ Overview of the proof of the Bounded L 2 Curvature Conjecture 2012 Sergiù Klainerman
Igor Rodnianski
Jérémie Szeftel
+ Jérémie Szeftel - The resolution of the bounded L2 curvature conjecture in General Relativity (Part 2) 2014 Jérémie Szeftel
Fanny Bastien
+ Overview of the proof of the Bounded $L^2$ Curvature Conjecture 2012 Sergiù Klainerman
Igor Rodnianski
Jérémie Szeftel
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mo>∇</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msub><mml:mi>R</mml:mi><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mo>∇</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:… 2019 R. R. Cuzinatto
C. A. M. de Melo
L. G. Medeiros
P. J. Pompeia
+ PDF Chat Problème de Cauchy spatial-caractéristique avec courbure <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup></mml:math> en relativité générale 2020 Olivier Graf
+ The curvature estimate of gradient <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si5.svg"><mml:mi>ρ</mml:mi></mml:math> Einstein soliton 2020 Xiaoling Yi
Anqiang Zhu
+ Scalar curvature equation on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>S</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math>, Part I: Topological conditions 2008 Min Ji
+ PDF Chat Generalized curvature and the equations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>D</mml:mi><mml:mo>=</mml:mo><mml:mn>11</mml:mn></mml:math> supergravity 2005 Igor Bandos
J. A. de Azcárraga
Moisés Picón
Oscar Varela
+ The curvature problem in general relativity 1989 Graham Hall
W. Kay
Alan D. Rendall
+ A Rigidity Theorem for non-Vacuum Initial Data 2000 Gábor Etesi
+ MATHEMATICAL CHALLENGES OF GENERAL RELATIVITY 2002 Sergiù Klainerman
+ Scalar curvature equation on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>S</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math>, Part II: Analytic characterizations 2008 Min Ji

Works That Cite This (0)

Action Title Year Authors