SCAN: Learning Abstract Hierarchical Compositional Visual Concepts

Type: Preprint

Publication Date: 2017-07-11

Citations: 20

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ SCAN: Learning Hierarchical Compositional Visual Concepts 2017 Irina Higgins
Nicolas Sonnerat
Löıc Matthey
Arka Pal
Christopher Burgess
Matko Bošnjak
Murray Shanahan
Matthew Botvinick
Demis Hassabis
Alexander Lerchner
+ Constellation: Learning relational abstractions over objects for compositional imagination. 2021 James C. R. Whittington
Rishabh Kabra
Löıc Matthey
Christopher Burgess
Alexander Lerchner
+ Constellation: Learning relational abstractions over objects for compositional imagination 2021 James C. R. Whittington
Rishabh Kabra
Löıc Matthey
Christopher Burgess
Alexander Lerchner
+ Flexible Compositional Learning of Structured Visual Concepts 2021 Yanli Zhou
Brenden M. Lake
+ PDF Chat Pix2Code: Learning to Compose Neural Visual Concepts as Programs 2024 Antonia Wüst
Wolfgang Stammer
Quentin Delfosse
Devendra Singh Dhami
Kristian Kersting
+ Compositional diversity in visual concept learning 2023 Yanli Zhou
Reuben Feinman
Brenden M. Lake
+ On the Transition from Neural Representation to Symbolic Knowledge 2023 Junyan Cheng
Peter Chin
+ Learning to Make Analogies by Contrasting Abstract Relational Structure 2019 Felix Hill
Adam Santoro
David G. T. Barrett
Ari S. Morcos
Timothy Lillicrap
+ Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations 2021 Wolfgang Stammer
Marius Memmel
Patrick Schramowski
Kristian Kersting
+ On the Binding Problem in Artificial Neural Networks 2020 Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
+ On the Binding Problem in Artificial Neural Networks. 2020 Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
+ ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time 2022 Tailin Wu
Megan Tjandrasuwita
Zhengxuan Wu
Yang Xue-lin
Kevin Liu
Rok Sosič
Jure Leskovec
+ Contrastive Learning of Structured World Models 2019 Thomas Kipf
Elise van der Pol
Max Welling
+ Learning Task-General Representations with Generative Neuro-Symbolic Modeling 2020 Reuben Feinman
Brenden M. Lake
+ The Relational Bottleneck as an Inductive Bias for Efficient Abstraction 2023 Taylor W. Webb
Steven Frankland
Awni Altabaa
Kamesh Krishnamurthy
Declan Campbell
Jacob Russin
Randall C. O’Reilly
John Lafferty
Jonathan Cohen
+ Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations 2020 Wolfgang Stammer
Patrick Schramowski
Kristian Kersting
+ PDF Chat Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations 2021 Wolfgang Stammer
Patrick Schramowski
Kristian Kersting
+ Composing Neural Learning and Symbolic Reasoning with an Application to Visual Discrimination 2019 Adithya Murali
Atharva Sehgal
Paul Krogmeier
P. Madhusudan
+ PDF Chat Composing Neural Learning and Symbolic Reasoning with an Application to Visual Discrimination 2022 Adithya Murali
Atharva Sehgal
Paul Krogmeier
P. Madhusudan
+ PDF Chat Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations 2022 Wolfgang Stammer
Marius Memmel
Patrick Schramowski
Kristian Kersting