Classical Well-Posedness of Free Boundary Problems in Viscous Incompressible Fluid Mechanics

Type: Book-Chapter

Publication Date: 2017-01-01

Citations: 5

DOI: https://doi.org/10.1007/978-3-319-10151-4_27-1

Locations

  • Springer eBooks - View

Similar Works

Action Title Year Authors
+ Classical Well-Posedness of Free Boundary Problems in Viscous Incompressible Fluid Mechanics 2018 V. A. Solonnikov
И. В. Денисова
+ Classical Well-Posedness of Free Boundary Problems in Viscous Incompressible Fluid Mechanics 2017 V. A. Solonnikov
И. В. Денисова
+ Global well-posedness for free boundary problem of the Oldroyd-B Model fluid flow (Mathematical Analysis of Viscous Incompressible Fluid) 2016 Sri Maryani
+ Free Boundary Problems for Inviscid Fluids 1991 Yumin Yang
+ Free boundary problems for compressible viscous fluids 1984 Alberto Valli
+ Free Boundary Problems for Compressible Flows 2024 Daniel Tataru
+ The no-slip boundary condition in fluid mechanics 2004 Sandeep Prabhakara
M. D. Deshpande
+ Classical solvability of a stationary free boundary problem for an incompressible viscous fluid describing the process of interface formation 2014 Yoshiaki Kusaka
+ On a free boundary problem in fluid mechanics 1991 Ruxandra Stavre
+ Problems Due to the No-Slip Boundary in Incompressible Fluid Dynamics 2003 Jens Frehse
Josef Málek
+ Global Well-Posedness of Classical Solutions to the Compressible Navier–Stokes–Poisson Equations with Slip Boundary Conditions in 3D Bounded Domains 2024 Yazhou Chen
Bin Huang
Xiaoding Shi
+ Well Posedness for Pressureless Flow 2001 Feimin Huang
Zhen Wang
+ Free Boundary Problems for General Fluids 1989 Atusi Tani
+ Free Boundary Problems for General Fluids 1989 温之 谷
+ Boundary conditions for incompressible flows 1986 Steven A. Orszag
M. Israeli
Michel Deville
+ Classical Solutions of Rayleigh–Taylor instability for inhomogeneous incompressible viscous fluids in bounded domains 2024 Fei Jiang
Youyi Zhao
+ Well-posedness of the Free Boundary Problem for Non-relativistic and Relativistic Compressible Euler Equations with a Vacuum Boundary Condition 2012 Yuri Trakhinin
+ Stability and diffraction problems in incompressible fluid mechanics 1983 David C. Shaw
+ Well-posedness in critical spaces for incompressible viscoelastic fluid system 2010 Jianzhen Qian
+ Free Boundary Problems for the Incompressible Euler Equations(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics) 1994 Atusi Tani

Works Cited by This (43)

Action Title Year Authors
+ PDF Chat Instability of axially symmetric equilibrium figures of a rotating, viscous, incompressible liquid 2006 V. A. Solonnikov
+ PDF Chat None 2003 V. A. Solonnikov
+ Local Solvability of Free Boundary Problems for the Two-phase Navier-Stokes Equations with Surface Tension in the Whole Space 2011 Senjo Shimizu
+ On the local solvability of free boundary problem for the Navier–Stokes equations 2010 M. Padula
V. A. Solonnikov
+ Global solvability of a problem governing the motion of two incompressible capillary fluids in a container 2012 И. В. Денисова
V. A. Solonnikov
+ Solvability in Hölder spaces of a model initial-boundary value problem generated by a problem on the motion of two fluids 1994 И. В. Денисова
V. A. Solonnikov
+ Maximal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math>–<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msub><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:math> regularity for the two-phase Stokes equations; Model problems 2011 Yoshihiro Shibata
Senjo Shimizu
+ Small-time existence for the Navier-Stokes equations with a free surface 1987 Geneviève Allain
+ L p -Theory of the Problem of Motion of Two Incompressible Capillary Fluids in a Container 2014 V. A. Solonnikov
+ PDF Chat Global $L_2$-solvability of a problem governing two-phase fluid motion without surface tension 2014 И. В. Денисова