Interpretable and Explorable Approximations of Black Box Models

Type: Preprint

Publication Date: 2017-01-01

Citations: 130

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Interpretable & Explorable Approximations of Black Box Models 2017 Himabindu Lakkaraju
Ece Kamar
Rich Caruana
Jure Leskovec
+ PDF Chat Interpretable Companions for Black-Box Models 2020 Danqing Pan
Tong Wang
Satoshi Hara
+ Interpretable Companions for Black-Box Models 2020 Danqing Pan
Tong Wang
Satoshi Hara
+ BELLA: Black box model Explanations by Local Linear Approximations 2023 Nedeljko Radulovic
Albert Bifet
Fabian M. Suchanek
+ Partially Interpretable Estimators (PIE): Black-Box-Refined Interpretable Machine Learning 2021 Tong Wang
Jingyi Yang
Yunyi Li
Boxiang Wang
+ Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability 2023 Usha Bhalla
Suraj Srinivas
Himabindu Lakkaraju
+ Global Aggregations of Local Explanations for Black Box models 2019 Ilse van der Linden
Hinda Haned
Evangelos Kanoulas
+ Global Aggregations of Local Explanations for Black Box models 2019 Ilse van der Linden
Hinda Haned
Evangelos Kanoulas
+ Hybrid Predictive Model: When an Interpretable Model Collaborates with a Black-box Model 2019 Tong Wang
Qihang Lin
+ Programs as Black-Box Explanations 2016 Sameer Singh
Marco Túlio Ribeiro
Carlos Guestrin
+ Model-Agnostic Linear Competitors -- When Interpretable Models Compete and Collaborate with Black-Box Models 2019 Hassan Rafique
Tong Wang
Qihang Lin
+ Hybrid Decision Making: When Interpretable Models Collaborate With Black-Box Models. 2018 Tong Wang
+ LIMEtree: Consistent and Faithful Surrogate Explanations of Multiple Classes 2020 Kacper Sokol
Peter Flach
+ Techniques for Interpretable Machine Learning 2018 Mengnan Du
Ninghao Liu
Xia Hu
+ Gaining Free or Low-Cost Transparency with Interpretable Partial Substitute 2018 Tong Wang
+ Leveraging Model-based Trees as Interpretable Surrogate Models for Model Distillation 2023 Julia Herbinger
Susanne Dandl
Fiona Katharina Ewald
Sofia Loibl
Giuseppe Casalicchio
+ Interpreting Black-box Machine Learning Models for High Dimensional Datasets 2022 Md. Rezaul Karim
Md Shajalal
Alex Graß
Till Döhmen
Sisay Adugna Chala
Christian Beecks
Stefan Decker
+ PDF Chat Global Model Interpretation Via Recursive Partitioning 2018 Chengliang Yang
Anand Rangarajan
Sanjay Ranka
+ Global Model Interpretation via Recursive Partitioning 2018 Chengliang Yang
Anand Rangarajan
Sanjay Ranka
+ Beyond explaining: Opportunities and challenges of XAI-based model improvement 2022 Leander Weber
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek

Works That Cite This (81)

Action Title Year Authors
+ PDF Chat Perturb more, trap more: Understanding behaviors of graph neural networks 2022 Chaojie Ji
Ruxin Wang
Hongyan Wu
+ PDF Chat Interpretability of machine learning‐based prediction models in healthcare 2020 Gregor Štiglic
Primož Kocbek
Nino Fijačko
Marinka Žitnik
Katrien Verbert
Leona Cilar
+ Levels of explainable artificial intelligence for human-aligned conversational explanations 2021 Richard Dazeley
Peter Vamplew
Cameron Foale
Charlotte Young
Sunil Aryal
Francisco Cruz
+ PDF Chat Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI 2019 Alejandro Barredo Arrieta
Natalia Díaz-Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
Alberto Barbado
Salvador García
Sergio Gil-López
Daniel Molina
Richard Benjamins
+ GNNExplainer: Generating Explanations for Graph Neural Networks 2019 Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Žitnik
Jure Leskovec
+ Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance 2020 Gagan Bansal
Tongshuang Wu
Joyce Zhou
Raymond Fok
Besmira Nushi
Ece Kamar
Marco Túlio Ribeiro
Daniel S. Weld
+ Towards falsifiable interpretability research 2020 Matthew L. Leavitt
Ari S. Morcos
+ PDF Chat Interpretable Deep Convolutional Neural Networks via Meta-learning 2018 Xuan Liu
Xiaoguang Wang
Stan Matwin
+ PDF Chat Explaining anomalies in groups with characterizing subspace rules 2018 Meghanath Macha
Leman Akoglu
+ Learning Fair Rule Lists 2019 Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie‐José Huguet
Mohamed Siala

Works Cited by This (1)

Action Title Year Authors
+ Understanding Black-box Predictions via Influence Functions 2017 Pang Wei Koh
Percy Liang