Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Interpretable and Explorable Approximations of Black Box Models
Himabindu Lakkaraju
,
Ece Kamar
,
Rich Caruana
,
Jure Leskovec
Type:
Preprint
Publication Date:
2017-01-01
Citations:
130
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Interpretable & Explorable Approximations of Black Box Models
2017
Himabindu Lakkaraju
Ece Kamar
Rich Caruana
Jure Leskovec
+
PDF
Chat
Interpretable Companions for Black-Box Models
2020
Danqing Pan
Tong Wang
Satoshi Hara
+
Interpretable Companions for Black-Box Models
2020
Danqing Pan
Tong Wang
Satoshi Hara
+
BELLA: Black box model Explanations by Local Linear Approximations
2023
Nedeljko Radulovic
Albert Bifet
Fabian M. Suchanek
+
Partially Interpretable Estimators (PIE): Black-Box-Refined Interpretable Machine Learning
2021
Tong Wang
Jingyi Yang
Yunyi Li
Boxiang Wang
+
Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability
2023
Usha Bhalla
Suraj Srinivas
Himabindu Lakkaraju
+
Global Aggregations of Local Explanations for Black Box models
2019
Ilse van der Linden
Hinda Haned
Evangelos Kanoulas
+
Global Aggregations of Local Explanations for Black Box models
2019
Ilse van der Linden
Hinda Haned
Evangelos Kanoulas
+
Hybrid Predictive Model: When an Interpretable Model Collaborates with a Black-box Model
2019
Tong Wang
Qihang Lin
+
Programs as Black-Box Explanations
2016
Sameer Singh
Marco Túlio Ribeiro
Carlos Guestrin
+
Model-Agnostic Linear Competitors -- When Interpretable Models Compete and Collaborate with Black-Box Models
2019
Hassan Rafique
Tong Wang
Qihang Lin
+
Hybrid Decision Making: When Interpretable Models Collaborate With Black-Box Models.
2018
Tong Wang
+
LIMEtree: Consistent and Faithful Surrogate Explanations of Multiple Classes
2020
Kacper Sokol
Peter Flach
+
Techniques for Interpretable Machine Learning
2018
Mengnan Du
Ninghao Liu
Xia Hu
+
Gaining Free or Low-Cost Transparency with Interpretable Partial Substitute
2018
Tong Wang
+
Leveraging Model-based Trees as Interpretable Surrogate Models for Model Distillation
2023
Julia Herbinger
Susanne Dandl
Fiona Katharina Ewald
Sofia Loibl
Giuseppe Casalicchio
+
Interpreting Black-box Machine Learning Models for High Dimensional Datasets
2022
Md. Rezaul Karim
Md Shajalal
Alex Graß
Till Döhmen
Sisay Adugna Chala
Christian Beecks
Stefan Decker
+
PDF
Chat
Global Model Interpretation Via Recursive Partitioning
2018
Chengliang Yang
Anand Rangarajan
Sanjay Ranka
+
Global Model Interpretation via Recursive Partitioning
2018
Chengliang Yang
Anand Rangarajan
Sanjay Ranka
+
Beyond explaining: Opportunities and challenges of XAI-based model improvement
2022
Leander Weber
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Works That Cite This (81)
Action
Title
Year
Authors
+
PDF
Chat
Perturb more, trap more: Understanding behaviors of graph neural networks
2022
Chaojie Ji
Ruxin Wang
Hongyan Wu
+
PDF
Chat
Interpretability of machine learning‐based prediction models in healthcare
2020
Gregor Štiglic
Primož Kocbek
Nino Fijačko
Marinka Žitnik
Katrien Verbert
Leona Cilar
+
Levels of explainable artificial intelligence for human-aligned conversational explanations
2021
Richard Dazeley
Peter Vamplew
Cameron Foale
Charlotte Young
Sunil Aryal
Francisco Cruz
+
PDF
Chat
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
2019
Alejandro Barredo Arrieta
Natalia Díaz-Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
Alberto Barbado
Salvador García
Sergio Gil-López
Daniel Molina
Richard Benjamins
+
GNNExplainer: Generating Explanations for Graph Neural Networks
2019
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Žitnik
Jure Leskovec
+
Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
2020
Gagan Bansal
Tongshuang Wu
Joyce Zhou
Raymond Fok
Besmira Nushi
Ece Kamar
Marco Túlio Ribeiro
Daniel S. Weld
+
Towards falsifiable interpretability research
2020
Matthew L. Leavitt
Ari S. Morcos
+
PDF
Chat
Interpretable Deep Convolutional Neural Networks via Meta-learning
2018
Xuan Liu
Xiaoguang Wang
Stan Matwin
+
PDF
Chat
Explaining anomalies in groups with characterizing subspace rules
2018
Meghanath Macha
Leman Akoglu
+
Learning Fair Rule Lists
2019
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie‐José Huguet
Mohamed Siala
Works Cited by This (1)
Action
Title
Year
Authors
+
Understanding Black-box Predictions via Influence Functions
2017
Pang Wei Koh
Percy Liang