Integral points on Markoff type cubic surfaces

Type: Article

Publication Date: 2022-05-30

Citations: 13

DOI: https://doi.org/10.1007/s00222-022-01114-z

Abstract

For integers k, we consider the affine cubic surface $$V_{k}$$ given by $$M(\mathbf{x})=x_{1}^2 + x_{2}^2 +x_{3}^2 -x_{1}x_{2}x_{3}=k$$ . We show that for almost all k the Hasse Principle holds, namely that $$V_{k}({\mathbb {Z}})$$ is non-empty if $$V_{k}({\mathbb {Z}}_p)$$ is non-empty for all primes p, and that there are infinitely many k's for which it fails. The Markoff morphisms act on $$V_{k}({\mathbb {Z}})$$ with finitely many orbits and a numerical study points to some basic conjectures about these "class numbers" and Hasse failures. Some of the analysis may be extended to less special affine cubic surfaces.

Locations

  • Inventiones mathematicae - View
  • arXiv (Cornell University) - View - PDF
  • SHAREOK (University of Oklahoma) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Inventiones mathematicae - View
  • arXiv (Cornell University) - View - PDF
  • SHAREOK (University of Oklahoma) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Inventiones mathematicae - View
  • arXiv (Cornell University) - View - PDF
  • SHAREOK (University of Oklahoma) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Integral Hasse principle for Markoff type cubic surfaces 2024 Hrishabh Mishra
+ PDF Chat Orbits on K3 Surfaces of Markoff Type 2023 Elena Fuchs
Matthew Litman
Joseph H. Silverman
Austin Tran
+ Integral points on symmetric affine cubic surfaces 2022 H. Uppal
+ Orbits on K3 Surfaces of Markoff Type 2022 Elena Fuchs
Matthew Litman
Joseph H. Silverman
Austin Tran
+ Brauer-Manin obstruction for integral points on Markoff-type cubic surfaces 2022 Quang-Duc Dao
+ PDF Brauer–Manin obstruction for integral points on Markoff-type cubic surfaces 2023 Quang-Duc Dao
+ PDF Chat Integral points on cubic surfaces: heuristics and numerics 2024 T. D. Browning
Florian Wilsch
+ Picard ranks of K3 surfaces over function fields and the Hecke orbit conjecture 2020 Davesh Maulik
Ananth N. Shankar
Yunqing Tang
+ PDF Chat Picard ranks of K3 surfaces over function fields and the Hecke orbit conjecture 2022 Davesh Maulik
Ananth N. Shankar
Yunqing Tang
+ On Markoff Type Surfaces over Number Fields and the Arithmetic of Markoff Numbers 2024 Seoyoung C. Kim
Damaris Schindler
Jyothsnaa Sivaraman
+ Large orbits on Markoff-type K3 surfaces over finite fields 2022 Evan M. O’Dorney
+ PDF Chat Large Orbits on Markoff-Type K3 Surfaces over Finite Fields 2022 Evan M. O’Dorney
+ PDF Chat Integral points on twisted Markoff surfaces 2020 Sheng Chen
+ PDF Order <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>5</mml:mn></mml:math> Brauer–Manin obstructions to the integral Hasse principle on log K3 surfaces 2022 Julian Lyczak
+ PDF Chat How often does a cubic hypersurface have a rational point? 2024 Lea Beneish
Christopher Keyes
+ Cubic surfaces failing the integral Hasse principle 2023 Julian Lyczak
Vladimir Mitankin
H. Uppal
+ Brauer-Manin obstruction for Markoff surfaces 2018 Jean-Louis Colliot-ThÊlène
Dasheng Wei
Fei Xu
+ PDF Chat Brauer-Manin obstruction for Markoff surfaces 2019 Jean-Louis Colliot-ThÊlène
Dasheng Wei
Fei Xu
+ PDF Cubic points on cubic curves and the Brauer–Manin obstruction on K3 surfaces 2010 Ronald van Luijk
+ PDF Integral points on symmetric affine cubic surfaces 2023 H. Uppal