Ghost-spin chains, entanglement, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>b</mml:mi><mml:mi>c</mml:mi></mml:math> -ghost CFTs

Type: Article

Publication Date: 2017-11-22

Citations: 13

DOI: https://doi.org/10.1103/physrevd.96.106015

Abstract

We study 1-dimensional chains of ghost-spins with nearest neighbour interactions amongst them, developing further the study of ghost-spins in previous work, defined as 2-state spin variables with indefinite norm. First we study finite ghost-spin chains with Ising-like nearest neighbour interactions: this helps organize and clarify the study of entanglement earlier and we develop this further. Then we study a family of infinite ghost-spin chains with a different Hamiltonian containing nearest neighbour hopping-type interactions. By defining fermionic ghost-spin variables through a Jordan-Wigner transformation, we argue that these ghost-spin chains lead in the continuum limit to the $bc$-ghost CFTs.

Locations

  • Physical review. D/Physical review. D. - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ The quantum Ising chain for beginners 2020 Glen Bigan Mbeng
Angelo Russomanno
Giuseppe E. Santoro
+ PDF Chat The quantum Ising chain for beginners 2024 Glen Bigan Mbeng
Angelo Russomanno
Giuseppe E. Santoro
+ PDF Chat Non-local spin entanglement in a fermionic chain 2022 Sayan Jana
Anant Vijay Varma
Arijit Saha
Sourin Das
+ PDF Chat Crossed Spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:math>Heisenberg Chains as a Quantum Impurity Problem 2005 Sebastian Reyes
A. M. Tsvelik
+ PDF Chat Entanglement in Spin Chains 2022 Abolfazl Bayat
Sougato Bose
Henrik Johannesson
+ PDF Chat Incommensurability effects in odd length<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>quantum spin chains: On-site magnetization and entanglement 2013 Andreas Deschner
Erik S. Sørensen
+ PDF Chat Phase diagram of the quantum spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> Heisenberg- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Γ</mml:mi></mml:math> model on a frustrated zigzag chain 2024 H. Saito
Chisa Hotta
+ Entanglement in spin chains and lattices with long-range interactions 2004 Wolfgang DĂĽr
L. Hartmann
M. Hein
H. J. Briegel
+ PDF Chat Entanglement in Fermionic Chains and Bispectrality 2020 Nicolas Crampé
Rafael I. Nepomechie
Luc Vinet
+ Frustrated spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> Heisenberg model on a kagome-strip chain: Dimerization and mapping to a spin-orbital Kugel-Khomskii model 2025 S. K. Ghosh
Rajiv Singh
M. G. Sampath Kumar
+ PDF Chat Entanglement dynamics via geometric phases in quantum spin chains 2011 Cleidson Castro
M. S. Sarandy
+ PDF Chat From <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">SU</mml:mi><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mn>5</mml:mn></mml:msub></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">SU</mml:mi><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> Wess-Zumino-Witten transitions in a … 2022 Natalia Chepiga
Ian Affleck
Frédéric Mila
+ Wilson loops and spin networks 2006 Thierry LĂ©vy
+ Fermionic logarithmic negativity in the Krawtchouk chain 2024 Gabrielle Blanchet
Gilles Parez
Luc Vinet
+ PDF Chat CRITICALITY WITHOUT FRUSTRATION FOR QUANTUM SPIN-1 CHAINS 2013 Sergey Bravyi
+ PDF Chat Entanglement between distant qubits in cyclic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>X</mml:mi><mml:mi>X</mml:mi></mml:mrow></mml:math>chains 2007 N. Canosa
R. Rossignoli
+ PDF Chat Studies on a frustrated Heisenberg spin chain with alternating ferromagnetic and antiferromagnetic exchanges 2014 Shaon Sahoo
V. M. L. Durga Prasad Goli
Diptiman Sen
S. Ramasesha
+ PDF Chat Spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> kagome XXZ model in a field: Competition between lattice nematic and solid orders 2016 Augustine Kshetrimayum
Thibaut Picot
Román Orús
Didier Poilblanc
+ PDF Chat Spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mstyle scriptlevel="1"><mml:mfrac bevelled="false"><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mstyle></mml:mrow></mml:math>Heisenberg ladder: Variation of entanglement and fidelity measures close to quantum critical points 2009 Amit Tribedi
Indrani Bose
+ PDF Chat Signature of a quantum dimensional transition in the spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> antiferromagnetic Heisenberg model on a square lattice and space reduction in the matrix product state 2019 Lihua Wang
Kwang S. Kim