Type: Article
Publication Date: 2017-11-20
Citations: 28
DOI: https://doi.org/10.1103/physrevlett.119.210401
Topological insulating phases are primarily associated with condensed-matter systems, which typically feature short-range interactions. Nevertheless, many realizations of quantum matter can exhibit long-range interactions, and it is still largely unknown the effect that these latter may exert upon the topological phases. In this Letter, we investigate the Su-Schrieffer-Heeger topological insulator in the presence of long-range interactions. We show that this model can be readily realized in quantum simulators with trapped ions by means of a periodic driving. Our results indicate that the localization of the associated edge states is enhanced by the long-range interactions, and that the localized components survive within the ground state of the model. These effects could be easily confirmed in current state-of-the-art experimental implementations.