Statistical properties of sketching algorithms

Type: Preprint

Publication Date: 2017-06-12

Citations: 21

View

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Statistical properties of sketching algorithms 2017 Daniel Ahfock
William J. Astle
Sylvia Richardson
+ PDF Chat Statistical properties of sketching algorithms 2020 Daniel Ahfock
William J. Astle
Sylvia Richardson
+ A New Theory for Sketching in Linear Regression. 2018 Edgar Dobriban
Sifan Liu
+ A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares 2014 Garvesh Raskutti
Michael W. Mahoney
+ Statistical inference for sketching algorithms 2023 Ryan P. Browne
Jeffrey L. Andrews
+ Algorithmic Gaussianization through Sketching: Converting Data into Sub-gaussian Random Designs 2022 Michał Dereziński
+ A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares 2014 Garvesh Raskutti
Michael W. Mahoney
+ Statistical inference for sketching algorithms 2024 Ryan P. Browne
Jeffrey L. Andrews
+ A Framework for Statistical Inference via Randomized Algorithms 2023 Zhi-Xiang Zhang
Sokbae Lee
Edgar Dobriban
+ Asymptotics for Sketching in Least Squares Regression 2018 Edgar Dobriban
Sifan Liu
+ Statistical and Algorithmic Perspectives on Randomized Sketching for Ordinary Least-Squares 2015 Garvesh Raskutti
Michael W. Mahoney
+ Statistical and Algorithmic Perspectives on Randomized Sketching for Ordinary Least-Squares -- ICML 2015 Garvesh Raskutti
Michael W. Mahoney
+ On randomized sketching algorithms and the Tracy-Widom law 2022 Daniel Ahfock
William J. Astle
Sylvia Richardson
+ PDF Chat On randomized sketching algorithms and the Tracy–Widom law 2023 Daniel Ahfock
William J. Astle
Sylvia Richardson
+ PDF Chat Inference in Randomized Least Squares and PCA via Normality of Quadratic Forms 2024 L. S. Wang
Zhi-Xiang Zhang
Edgar Dobriban
+ Distributed Sketching Methods for Privacy Preserving Regression 2020 Burak Bartan
Mert Pilancı
+ Precise expressions for random projections: Low-rank approximation and randomized Newton 2020 Michał Dereziński
Feynman Liang
Zhenyu Liao
Michael W. Mahoney
+ Precise expressions for random projections: Low-rank approximation and randomized Newton 2020 Michał Dereziński
Feynman Liang
Zhenyu Liao
Michael W. Mahoney
+ Density Sketches for Sampling and Estimation 2021 Aditya Desai
Benjamin Coleman
Anshumali Shrivastava
+ PDF Chat Estimation de mélange de Gaussiennes sur données compressées 2013 Anthony Bourrier
Rémi Gribonval
Patrick Pérez

Cited by (20)

Action Title Year Authors
+ PDF Chat Lower Bounds and a Near-Optimal Shrinkage Estimator for Least Squares Using Random Projections 2020 Srivatsan Sridhar
Mert Pilancı
Ayfer Özgür
+ Sketching in Bayesian High Dimensional Regression With Big Data Using Gaussian Scale Mixture Priors 2021 Rajarshi Guhaniyogi
Aaron Scheffler
+ PDF Chat Randomized Algorithms for Computation of Tucker Decomposition and Higher Order SVD (HOSVD) 2021 Salman Ahmadi‐Asl
Stanislav Abukhovich
Maame G. Asante-Mensah
Andrzej Cichocki
Anh Huy Phan
Toshihisa Tanaka
Ivan Oseledets
+ Automated Scalable Bayesian Inference via Hilbert Coresets 2017 Trevor Campbell
Tamara Broderick
+ Sparse Variational Inference: Bayesian Coresets from Scratch 2019 Trevor Campbell
Boyan Beronov
+ PDF Chat Random projections: Data perturbation for classification problems 2020 Timothy I. Cannings
+ Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap 2018 Miles E. Lopes
Shusen Wang
Michael W. Mahoney
+ Ridge Regression: Structure, Cross-Validation, and Sketching 2019 Sifan Liu
Edgar Dobriban
+ PDF Chat An econometric perspective on algorithmic subsampling 2020 Serena Ng
Sokbae Lee
+ Error Estimation for Sketched SVD via the Bootstrap 2020 Miles E. Lopes
N. Benjamin Erichson
Michael W. Mahoney
+ Sketching for Two-Stage Least Squares Estimation. 2020 Sokbae Lee
Serena Ng
+ An Econometric Perspective on Algorithmic Subsampling 2019 Sokbae Lee
Serena Ng
+ PDF Chat Randomized Matrix Decompositions Using <i>R</i> 2019 N. Benjamin Erichson
Sergey Voronin
Steven L. Brunton
J. Nathan Kutz
+ Lower Bounds and a Near-Optimal Shrinkage Estimator for Least Squares using Random Projections 2020 Srivatsan Sridhar
Mert Pilancı
Ayfer Özgür
+ On Principal Components Regression, Random Projections, and Column Subsampling 2017 Martin Slawski
+ Randomized Algorithms for Computation of Tucker decomposition and Higher Order SVD (HOSVD) 2020 Salman Ahmadi‐Asl
Stanislav Abukhovich
Maame G. Asante-Mensah
Andrzej Cichocki
Anh Huy Phan
Toshihisa Tanaka
Ivan Oseledets
+ A New Theory for Sketching in Linear Regression. 2018 Edgar Dobriban
Sifan Liu
+ Asymptotics for Sketching in Least Squares Regression 2018 Edgar Dobriban
Sifan Liu
+ Matrix sketching for supervised classification with imbalanced classes 2019 Roberta Falcone
Angela Montanari
Laura Anderlucci
+ PDF Chat Robust Inference after Random Projections via Hellinger Distance for Location-Scale Family 2019 Lei Li
Anand N. Vidyashankar
Guoqing Diao
Ejaz Ahmed

Citing (28)

Action Title Year Authors
+ A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares 2014 Garvesh Raskutti
Michael W. Mahoney
+ Implementing Randomized Matrix Algorithms in Parallel and Distributed Environments 2015 Jiyan Yang
Xiangrui Meng
Michael W. Mahoney
+ Multivariate Statistics: A Vector Space Approach. 1985 Leon Jay Gleser
Morris L. Eaton
+ PDF Chat Bayesian Compressed Regression 2014 Rajarshi Guhaniyogi
David B. Dunson
+ PDF Chat Randomized Algorithms for Matrices and Data 2012 Michael W. Mahoney
+ On the central limit theorem for negatively correlated random variables with negatively correlated squares 2000 Alexander R. Pruss
Dominik Szynal
+ PDF Chat Efficient Gaussian process regression for large datasets 2012 Anjishnu Banerjee
David B. Dunson
Surya T. Tokdar
+ Sampling algorithms for <i>l</i><sub>2</sub> regression and applications 2006 Petros Drineas
Michael W. Mahoney
S. Muthukrishnan
+ Leveraging for big data regression 2014 Ping Ma
Xiaoxiao Sun
+ PDF Chat Low rank approximation and regression in input sparsity time 2013 Kenneth L. Clarkson
David P. Woodruff
+ PDF Chat Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions 2011 Nathan Halko
Per‐Gunnar Martinsson
Joel A. Tropp
+ PDF Chat Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression 2013 Xiangrui Meng
Michael W. Mahoney
+ All Invariant Moments of the Wishart Distribution 2004 Gérard Letac
Hélène Massam
+ Min-wise hashing for large-scale regression and classication with sparse data 2013 Rajen D. Shah
Nicolai Meinshausen
+ PDF Chat Random projections for Bayesian regression 2015 Leo N. Geppert
Katja Ickstadt
Alexander Munteanu
Jens Quedenfeld
Christian Sohler
+ Coresets and Sketches 2016 Jeff M. Phillips
+ Sub-Sampled Newton Methods I: Globally Convergent Algorithms 2016 Farbod Roosta-Khorasani
Michael W. Mahoney
+ PDF Chat Random Projections for Large-Scale Regression 2017 Gian-Andrea Thanei
Christina Heinze
Nicolai Meinshausen
+ A Statistical Perspective on Algorithmic Leveraging 2013 Ping Ma
Michael W. Mahoney
Bin Yu
+ Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap 2018 Miles E. Lopes
Shusen Wang
Michael W. Mahoney
+ PDF Chat Convergence of Probability Measures 1999 Patrick Billingsley
+ Randomized Least Squares Regression: Combining Model- and Algorithm-Induced Uncertainties. 2018 T. Jocelyn
Ilse C. F. Ipsen
+ A New Theory for Sketching in Linear Regression. 2018 Edgar Dobriban
Sifan Liu
+ Random-projection ensemble classification 2015 Timothy I. Cannings
Richard J. Samworth
+ Sampling algorithms for l2 regression and applications 2006 Petros Drineas
Michael W. Mahoney
S. Muthukrishnan
+ Wiley Series in Probability and Statistics 2007
+ PDF Chat Probability for Statisticians 2017 Galen R. Shorack
+ PDF Chat Randomized Iterative Methods for Linear Systems 2015 Robert M. Gower
Peter Richtárik