Multiple Object Tracking in Unknown Backgrounds With Labeled Random Finite Sets

Type: Article

Publication Date: 2018-04-03

Citations: 67

DOI: https://doi.org/10.1109/tsp.2018.2821650

Abstract

This paper proposes an on-line multiple object tracking algorithm that can operate in unknown background. In a majority of multiple object tracking applications, model parameters for background processes such as clutter and detection are unknown and vary with time, hence the ability of the algorithm to adaptively learn the these parameters is essential in practice. In this work, we detail how the Generalized Labeled Multi Bernouli (GLMB) filter a tractable and provably Bayes optimal multi-object tracker can be tailored to learn clutter and detection parameters on the fly while tracking. Provided that these background model parameters do not fluctuate rapidly compared to the data rate, the proposed algorithm can adapt to the unknown background yielding better tracking performance.

Locations

  • IEEE Transactions on Signal Processing - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Multi-object Tracking with an Adaptive Generalized Labeled Multi-Bernoulli Filter 2020 Cong-Thanh Do
Tran Thien Dat Nguyen
Diluka Moratuwage
Changbeom Shim
Yon Dohn Chung
+ The multiple model labeled multi-Bernoulli filter 2015 Stephan Reuter
Alexander Scheel
Klaus Dietmayer
+ Visual Multiple-Object Tracking for Unknown Clutter Rate 2017 Du Yong Kim
+ Visual Multiple-Object Tracking for Unknown Clutter Rate 2017 Du Yong Kim
+ An Efficient Labeled/Unlabeled Random Finite Set Algorithm for Multiobject Tracking 2021 Thomas Kropfreiter
Florian Meyer
Franz Hlawatsch
+ PDF Chat An Efficient Labeled/Unlabeled Random Finite Set Algorithm for Multiobject Tracking 2022 Thomas Kropfreiter
Florian Meyer
Franz Hlawatsch
+ Online Visual Multi-Object Tracking via Labeled Random Finite Set Filtering 2016 Du Yong Kim
Ba‐Ngu Vo
Ba-Tuong Vo
+ Online Visual Multi-Object Tracking via Labeled Random Finite Set Filtering 2016 Du Yong Kim
Ba‐Ngu Vo
Ba-Tuong Vo
+ PDF Chat Generalized Labeled Multi-Bernoulli Approximation of Multi-Object Densities 2015 Francesco Papi
Ba‐Ngu Vo
Ba-Tuong Vo
Claudio Fantacci
Michael Beard
+ PDF Chat Multiple Extended Target Tracking With Labeled Random Finite Sets 2015 Michael Beard
Stephan Reuter
Karl Granström
Ba-Tuong Vo
Ba‐Ngu Vo
Alexander Scheel
+ Multi-Sensor Multi-object Tracking with the Generalized Labeled Multi-Bernoulli Filter 2017 Ba‐Ngu Vo
Ba-Tuong Vo
+ Multi-Sensor Multi-object Tracking with the Generalized Labeled Multi-Bernoulli Filter 2017 Ba‐Ngu Vo
Ba-Tuong Vo
+ Visual multiple‐object tracking for unknown clutter rate 2018 Du Yong Kim
+ PDF Chat Multi-object tracking with an adaptive generalized labeled multi-Bernoulli filter 2022 Cong-Thanh Do
Tran Thien Dat Nguyen
Diluka Moratuwage
Changbeom Shim
Yon Dohn Chung
+ Multi-object Tracking for Generic Observation Model Using Labeled Random Finite Sets 2016 Suqi Li
Wei Yi
Reza Hoseinnezhad
Bailu Wang
Lingjiang Kong
+ PDF Chat Multiobject Tracking for Generic Observation Model Using Labeled Random Finite Sets 2017 Suqi Li
Wei Yi
Reza Hoseinnezhad
Bailu Wang
Lingjiang Kong
+ A Scalable Track-Before-Detect Method With Poisson/Multi-Bernoulli Model 2021 Thomas Kropfreiter
Jason L. Williams
Florian Meyer
+ PDF Chat A Scalable Track-Before-Detect Method With Poisson/Multi-Bernoulli Model 2021 Thomas Kropfreiter
Jason Williams
Florian Meyer
+ Robust multi-sensor GLMB filter: An application to multi-target tracking with bearing-only sensors 2021 Cong-Thanh Do
Tran Thien Dat Nguyen
Hoa Van Nguyen
+ Bayesian nonparametric modeling for predicting dynamic dependencies in multiple object tracking 2020 Bahman Moraffah
Antonia Papndreou-Suppopola

Works That Cite This (14)

Action Title Year Authors
+ PDF Chat Bayesian Nonparametric Modeling for Predicting Dynamic Dependencies in Multiple Object Tracking 2022 Bahman Moraffah
Antonia Papandreou‐Suppappola
+ PDF Chat Stochastic Neural Networks for Automatic Cell Tracking in Microscopy Image Sequences of Bacterial Colonies 2022 S. Arash Nezam Sarmadi
James J. Winkle
Razan N. Alnahhas
Matthew R. Bennett
Krešimir Josić́
Andreas Mang
Robert Azencott
+ Filtering Point Targets via Online Learning of Motion Models 2019 Mehryar Emambakhsh
Alessandro Bay
Eduard Vazquez
+ PDF Chat Robust multi-sensor generalized labeled multi-Bernoulli filter 2021 Cong-Thanh Do
Tran Thien Dat Nguyen
Hoa Van Nguyen
+ PDF Chat The Trajectory PHD Filter for Jump Markov System Models and Its Gaussian Mixture Implementation 2021 Boxiang Zhang
Wei Yi
+ PDF Chat Multi-object tracking with an adaptive generalized labeled multi-Bernoulli filter 2022 Cong-Thanh Do
Tran Thien Dat Nguyen
Diluka Moratuwage
Changbeom Shim
Yon Dohn Chung
+ Multi-target tracking with an adaptive $\delta-$GLMB filter 2020 Cong-Thanh Do
Tran Thien Dat Nguyen
Diluka Moratuwage
+ PDF Chat Tracking Cells and Their Lineages Via Labeled Random Finite Sets 2021 Tran Thien Dat Nguyen
Ba‐Ngu Vo
Ba-Tuong Vo
Du Yong Kim
Yu Suk Choi
+ Trajectory PHD and CPHD Filters with Unknown Detection Profile 2022 Shaoxiu Wei
Boxiang Zhang
Wei Yi
+ PDF Chat A Bayesian Filter for Multi-View 3D Multi-Object Tracking With Occlusion Handling 2020 Jonah Ong
Ba-Tuong Vo
Ba‐Ngu Vo
Du Yong Kim
Sven Nordholm