Type: Article
Publication Date: 2017-07-15
Citations: 6
DOI: https://doi.org/10.3390/e19070364
This paper investigates polar codes for the additive white Gaussian noise (AWGN) channel. The scaling exponent $\mu$ of polar codes for a memoryless channel $q_{Y|X}$ with capacity $I(q_{Y|X})$ characterizes the closest gap between the capacity and non-asymptotic achievable rates in the following way: For a fixed $\varepsilon \in (0, 1)$, the gap between the capacity $I(q_{Y|X})$ and the maximum non-asymptotic rate $R_n^*$ achieved by a length-$n$ polar code with average error probability $\varepsilon$ scales as $n^{-1/\mu}$, i.e., $I(q_{Y|X})-R_n^* = \Theta(n^{-1/\mu})$. It is well known that the scaling exponent $\mu$ for any binary-input memoryless channel (BMC) with $I(q_{Y|X})\in(0,1)$ is bounded above by $4.714$, which was shown by an explicit construction of polar codes. Our main result shows that $4.714$ remains to be a valid upper bound on the scaling exponent for the AWGN channel. Our proof technique involves the following two ideas: (i) The capacity of the AWGN channel can be achieved within a gap of $O(n^{-1/\mu}\sqrt{\log n})$ by using an input alphabet consisting of $n$ constellations and restricting the input distribution to be uniform; (ii) The capacity of a multiple access channel (MAC) with an input alphabet consisting of $n$ constellations can be achieved within a gap of $O(n^{-1/\mu}\log n)$ by using a superposition of $\log n$ binary-input polar codes. In addition, we investigate the performance of polar codes in the moderate deviations regime where both the gap to capacity and the error probability vanish as $n$ grows. An explicit construction of polar codes is proposed to obey a certain tradeoff between the gap to capacity and the decay rate of the error probability for the AWGN channel.