Pointwise convergence of wavelet expansions

Type: Article

Publication Date: 1994-01-01

Citations: 81

DOI: https://doi.org/10.1090/s0273-0979-1994-00490-2

Abstract

In this note we announce that under general hypotheses, wavelet-type expansions (of functions in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to p less-than-or-equal-to normal infinity"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1 \leq p \leq \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in one or more dimensions) converge pointwise almost everywhere, and identify the Lebesgue set of a function as a set of full measure on which they converge. It is shown that unlike the Fourier summation kernel, wavelet summation kernels <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P Subscript j"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>P</mml:mi> <mml:mi>j</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{P_j}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are bounded by radial decreasing <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> convolution kernels. As a corollary it follows that best <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> spline approximations on uniform meshes converge pointwise almost everywhere. Moreover, summation of wavelet expansions is partially insensitive to order of summation. We also give necessary and sufficient conditions for given rates of convergence of wavelet expansions in the sup norm. Such expansions have order of convergence <italic>s</italic> if and only if the basic wavelet <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="psi"> <mml:semantics> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:annotation encoding="application/x-tex">\psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is in the homogeneous Sobolev space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript h Superscript negative s minus d slash 2"> <mml:semantics> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mi>h</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>s</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>d</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:annotation encoding="application/x-tex">H_h^{ - s - d/2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also present equivalent necessary and sufficient conditions on the scaling function. The above results hold in one and in multiple dimensions.

Locations

  • arXiv (Cornell University) - View - PDF
  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Pointwise convergence of wavelet expansions 1994 Susan Kelly
Mark Kon
Louise A. Raphael
+ PDF Chat Point wise Convergence of Wavelet Expansions 2018
+ Pointwise convergence of Fourier transforms 1993 D. S. Lubinsky
F. M�ricz
+ Pointwise Convergence and Uniform Convergence of Wavelet Frame Series 2006 Zhi Hua Zhang
+ Local Convergence for Wavelet Expansions 1994 S. E. Kelly
Mark Kon
Louise A. Raphael
+ Pointwise Convergence of Wavelets of Generalized Shannon Type 2013 Xian
Liang Liang
Shi
Wei
Wang
+ Pointwise convergence of wavelets of generalized Shannon type 2013 Xian Liang Shi
Wei Wang
+ Pointwise Convergence of Fourier Series 2002 Pierre Brémaud
+ Pointwise Convergence of Fourier Series 1980 Paul R. Chernoff
+ Pointwise convergence of Fourier series 2012 María Pereyra
Lesley A. Ward
+ Pointwise Convergence of Fourier Series 1980 Paul R. Chernoff
+ Pointwise Convergence and Uniform Convergence of Wavelet Frame Series 2006 Zhi
Hua
Zhang
+ Pointwise Convergence of Fourier Series 2002 Juan Arias de Reyna
+ PDF Chat Pointwise convergence of vector-valued Fourier series 2013 Tuomas Hytönen
Michael T. Lacey
+ Convergence of Wavelet Packet Series 2018 Khalil Ahmad
Abdullah Abdullah
+ On pointwise convergence of continuous wavelet transforms 2018 Ravshan Ashurov
Almaz Butaev
+ On the pointwise convergence of the continuous wavelet transforms of Lp-functions 2010 Ravshan Ashurov
+ Erratum: Pointwise Convergence of Fourier Series 1997 Charles Fefferman
+ PDF Chat POINTWISE CONVERGENCE OF FOURIER SERIES 2002 Juan Arias de Reyna
+ On the Rate of Convergence of Wavelet Expansions 2018 Varsha Karanjgaokar