Revisiting arithmetic solutions to the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>W</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>condition

Type: Article

Publication Date: 2017-11-02

Citations: 9

DOI: https://doi.org/10.1103/physrevd.96.106001

Abstract

The gravitino mass is expected not to be much smaller than the Planck scale for a large fraction of vacua in flux compactifications. There is no continuous parameter to tune even by hand, and it seems that the gravitino mass can be small only as a result of accidental cancellation among period integrals weighted by integer-valued flux quanta. DeWolfe et.al. (2005) proposed to pay close attention to vacua where the Hodge decomposition is possible within a number field, so that the precise cancellation takes place as a result of algebra. We focus on a subclass of those vacua---those with complex multiplications---and explore more on the idea in this article. It turns out, in Type IIB compactifications, that those vacua admit non-trivial supersymmetric flux configurations if and only if the reflex field of the Weil intermediate Jacobian is isomorphic to the quadratic imaginary field generated by the axidilaton vacuum expectation value. We also found that flux statistics is highly enriched on such vacua, as F-term conditions become linearly dependent.

Locations

  • Physical review. D/Physical review. D. - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Exact Flux Vacua, Symmetries, and the Structure of the Landscape 2024 Thomas W. Grimm
Damian van de Heisteeg
+ PDF Chat Challenge for spontaneous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:math> violation in Type IIB orientifolds with fluxes 2020 Tatsuo Kobayashi
Hajime Otsuka
+ Exact flux vacua, symmetries, and the structure of the landscape 2025 Thomas W. Grimm
Damian van de Heisteeg
+ PDF Chat Charting the landscape of $ \mathcal{N} = 4 $ flux compactifications 2011 Giuseppe Dibitetto
Adolfo Guarino
Diederik Roest
+ PDF Chat Reading-off the non-geometric scalar potentials with U-dual fluxes 2024 Sayan Biswas
G.K. Leontaris
Pramod Shukla
+ PDF Chat Universal axion backreaction in flux compactifications 2021 Thomas W. Grimm
Chongchuo Li
+ PDF Chat Reading off the nongeometric scalar potentials via the topological data of the compactifying Calabi-Yau manifolds 2016 Pramod Shukla
+ PDF Chat Fixing moduli in exact type IIA flux vacua 2007 B. S. Acharya
Francesco Benini
Roberto Valandro
+ Fixing Moduli in Exact Type IIA Flux Vacua 2007 Francesco Benini
+ PDF Chat General<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:math>Supersymmetric Flux Vacua of Massive Type IIA String Theory 2005 Klaus Behrndt
Mirjam Cvetič
+ PDF Chat Computing brane and flux superpotentials in F-theory compactifications 2010 Thomas W. Grimm
Tae-Won Ha
Albrecht Klemm
Denis Klevers
+ PDF Chat Supersymmetry Breaking with Zero Vacuum Energy in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>M</mml:mi></mml:math>-Theory Flux Compactifications 2007 Axel Krause
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>M</mml:mi></mml:math>Theory Solution to the Hierarchy Problem 2006 B. S. Acharya
Konstantin Bobkov
Gordon Kane
Piyush Kumar
Diana Vaman
+ Moduli Stabilization and Stability in Type II/F-theory flux compactifications 2024 David Prieto
+ PDF Chat Classification of supersymmetric flux vacua in M-theory 2006 Klaus Behrndt
Mirjam Cvetič
Tao Liu
+ Taxonomy of scalar potential with U-dual fluxes 2023 G.K. Leontaris
Pramod Shukla
+ Les Houches Lectures on Constructing String Vacua 2008 Frederik Denef
+ PDF Chat Moduli stabilization in asymptotic flux compactifications 2022 Thomas W. Grimm
Erik Plauschinn
Damian van de Heisteeg
+ Reading off the non-geometric scalar potentials via the topological data of the compactifying CYs 2016 Pramod Shukla
+ Finiteness Theorems and Counting Conjectures for the Flux Landscape 2023 Thomas W. Grimm
Jeroen Monnee