Discrete spectrum of interactions concentrated near conical surfaces

Type: Article

Publication Date: 2017-05-09

Citations: 18

DOI: https://doi.org/10.1080/00036811.2017.1325472

Abstract

We study the spectrum of two kinds of operators involving a conical geometry: the Dirichlet Laplacian in conical layers and Schrödinger operators with attractive -interactions supported by infinite cones. Under the assumption that the cones have smooth cross sections, we prove that such operators have infinitely many eigenvalues accumulating below the threshold of the essential spectrum and we express the accumulation rate in terms of the eigenvalues of an auxiliary one-dimensional operator with a curvature-induced potential.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Applicable Analysis - View

Similar Works

Action Title Year Authors
+ PDF Chat Attractive conical surfaces create infinitely many bound states 2019 Sebastian Egger
Joachim Kerner
Konstantin Pankrashkin
+ Spectral asymptotics for δ-interactions on sharp cones 2017 Thomas Ourmières-Bonafos
Konstantin Pankrashkin
Fabio Pizzichillo
+ PDF Chat On the bound states of Schrödinger operators with δ-interactions on conical surfaces 2016 Vladimir Lotoreichik
Thomas Ourmières-Bonafos
+ PDF Chat Spectrum of Dirichlet Laplacian in a conical layer 2010 Pavel Exner
Miloš Tater
+ PDF Chat Schrödinger operators with<i>δ</i>-interactions supported on conical surfaces 2014 Jussi Behrndt
Pavel Exner
Vladimir Lotoreichik
+ An eigenvalue inequality for Schrödinger operators with $δ$ and $δ'$-interactions supported on hypersurfaces 2014 Vladimir Lotoreichik
Jonathan Rohleder
+ On geometric perturbations of critical Schrödinger operators with a surface interaction 2009 Pavel Exner
Martin Fraas
+ PDF Chat Spectral asymptotics of the Dirichlet Laplacian in a conical layer 2015 Nicolas Raymond
Thomas Ourmières-Bonafos
Monique Dauge
+ PDF Chat Eigenvalue Counting Function for Robin Laplacians on Conical Domains 2017 Vincent Bruneau
Konstantin Pankrashkin
Nicolas Popoff
+ An eigenvalue inequality for Schr\"odinger operators with $\delta$ and $\delta'$-interactions supported on hypersurfaces 2014 Vladimir Lotoreichik
Jonathan Rohleder
+ One-dimensional Schrödinger operators with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>δ</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup></mml:math>-interactions on Cantor-type sets 2014 Jonathan Eckhardt
Aleksey Kostenko
M. M. Malamud
Gerald Teschl
+ PDF Chat An Eigenvalue Inequality for Schrödinger Operators with δ- and δ’-interactions Supported on Hypersurfaces 2015 Vladimir Lotoreichik
Jonathan Rohleder
+ The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points 2017 Johan Helsing
Karl‐Mikael Perfekt
+ The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points 2017 Johan Helsing
Karl‐Mikael Perfekt
+ Perelman's $λ$-functional on manifolds with conical singularities 2017 Xianzhe Dai
Changliang Wang
+ On geometric perturbations of critical Schrödinger operators with a surface interaction 2009 Pavel Exner
Martin Fraas
+ PDF Chat The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points 2017 Johan Helsing
Karl‐Mikael Perfekt
+ Two-Dimensional Dirac Operators with Interactions on Unbounded Smooth Curves 2021 Vladimir Rabinovich
+ Spherical Schrödinger operators with δ-type interactions 2013 Sergio Albeverio
Aleksey Kostenko
M. M. Malamud
Hagen Neidhardt
+ PDF Chat Infinity Laplacian equations with singular absorptions 2022 Damião J. Araújo
Ginaldo S. Sá