A planar large sieve and sparsity of time-frequency representations

Type: Article

Publication Date: 2017-07-01

Citations: 12

DOI: https://doi.org/10.1109/sampta.2017.8024412

Download PDF

Abstract

With the aim of measuring the sparsity of a real signal, Donoho and Logan introduced the concept of maximum Nyquist density, and used it to extend Bombieri's principle of the large sieve to bandlimited functions. This led to several recovery algorithms based on the minimization of the L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> -norm. In this paper we introduce the concept of planar maximum Nyquist density, which measures the sparsity of the time-frequency distribution of a function. We obtain a planar large sieve principle which applies to time-frequency representations with a Gaussian window, or equivalently, to Fock spaces, allowing for perfect recovery of the short-Fourier transform (STFT) of functions in the modulation space M <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> (also known as Feichtinger's algebra S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> ) corrupted by sparse noise and for approximation of missing STFT data in M <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> , by L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> -minimization.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ A planar large sieve and sparsity of time-frequency representations 2017 LuĂ­s Daniel Abreu
Michael Speckbacher
+ A planar large sieve and sparsity of time-frequency representations 2017 LuĂ­s Daniel Abreu
Michael Speckbacher
+ Donoho-Logan Large Sieve Principles for Modulation and Polyanalytic Fock Spaces 2018 LuĂ­s Daniel Abreu
Michael Speckbacher
+ Donoho-Logan Large Sieve Principles for Modulation and Polyanalytic Fock Spaces 2018 LuĂ­s Daniel Abreu
Michael Speckbacher
+ PDF Chat Donoho-Logan large sieve principles for modulation and polyanalytic Fock spaces 2021 LuĂ­s Daniel Abreu
Michael Speckbacher
+ Fourier Transformation and Sampling Theory 2016 RaĂşl Curbelo
+ PDF Chat Simple and Practical Algorithm for Sparse Fourier Transform 2012 Haitham Hassanieh
Piotr Indyk
Dina Katabi
Eric Price
+ PDF Chat Polynomial Fourier domain as a domain of signal sparsity 2016 Srdjan Stanković
Irena Orović
Ljubiša Stanković
+ On reconstruction algorithms for signals sparse in Hermite and Fourier domains 2019 Miloš Brajović
+ PDF Chat Sparse Sampling in Fractional Fourier Domain: Recovery Guarantees and Cram\'er-Rao Bounds 2024 Václav Pavlíček
Ayush Bhandari
+ PDF Chat Sparse Sampling in Fractional Fourier Domain: Recovery Guarantees and Cramér–Rao Bounds 2024 Václav Pavlíček
Ayush Bhandari
+ PDF Chat Sampling and reconstruction in sparse atomic spaces 2013 Volker Pohl
Ezra Tampubolon
Holger Boche
+ Simplification and factorization of the discrete Fourier transform matrix 1992 Jean M. Firth
+ Wavelet decomposition and bandwidth of functions defined on vector spaces over finite fields 2016 Alex Iosevich
A. Liu
Azita Mayeli
Jonathan Pakianathan
+ On reconstruction algorithms for signals sparse in Hermite and Fourier domains. 2019 Miloš Brajović
+ Sparse Representation in Fourier and Local Bases Using ProSparse: A Probabilistic Analysis 2016 Yue M. Lu
Jon Oñativia
Pier Luigi Dragotti
+ Time-frequency localized functions and operators in Gabor analysis 2010 Peter Rashkov
+ Sparse Representation in Fourier and Local Bases Using ProSparse: A Probabilistic Analysis 2017 Yue M. Lu
Jon Oñativia
Pier Luigi Dragotti
+ PDF Chat A Robust Sparse Fourier Transform in the Continuous Setting 2015 Eric Price
Zhao Song
+ Dimension-independent Sparse Fourier Transform 2019 Michael Kapralov
Ameya Velingker
Amir Zandieh