Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
,
Bolei Zhou
,
Aditya Khosla
,
Aude Oliva
,
Antonio Torralba
Type:
Preprint
Publication Date:
2017-04-19
Citations:
147
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Network Dissection: Quantifying Interpretability of Deep Visual Representations
2017
David Bau
Bolei Zhou
Aditya Khosla
Aude Oliva
Antonio Torralba
+
PDF
Chat
Network Dissection: Quantifying Interpretability of Deep Visual Representations
2017
David Bau
Bolei Zhou
Aditya Khosla
Aude Oliva
Antonio Torralba
+
Interpreting Deep Visual Representations via Network Dissection
2017
Bolei Zhou
David Bau
Aude Oliva
Antonio Torralba
+
Visual Interpretability for Deep Learning: a Survey
2018
Quanshi Zhang
SongâChun Zhu
+
PDF
Chat
Linking in Style: Understanding learned features in deep learning models
2024
Maren H. Wehrheim
Pamela Osuna-Vargas
Matthias Kaschube
+
PDF
Chat
Visual interpretability for deep learning: a survey
2018
Quanshi Zhang
SongâChun Zhu
+
PDF
Chat
Understanding the role of individual units in a deep neural network
2020
David Bau
Jun-Yan Zhu
Hendrik Strobelt
Ăgata Lapedriza
Bolei Zhou
Antonio Torralba
+
Labeling Neural Representations with Inverse Recognition
2023
Kirill Bykov
Laura Kopf
Shinichi Nakajima
Marius Kloft
Marina M. -C. Höhne
+
Visualizing and Comparing Convolutional Neural Networks
2014
Wei Yu
Kuiyuan Yang
Yalong Bai
Hongxun Yao
Yong Rui
+
DISCOVER: Making Vision Networks Interpretable via Competition and Dissection
2023
Konstantinos P. Panousis
Sotirios Chatzis
+
Visualizing and Understanding Convolutional Networks
2013
Matthew D. Zeiler
Rob Fergus
+
Visualizing and Understanding Convolutional Networks
2013
Matthew D. Zeiler
Rob Fergus
+
Learning Interpretable Concept Groups in CNNs
2021
Saurabh Varshneya
Antoine Ledent
Robert A. Vandermeulen
Yunwen Lei
Matthias Enders
Damian Borth
Marius Kloft
+
PDF
Chat
A separability-based approach to quantifying generalization: which layer is best?
2024
Luciano Dyballa
Evan Gerritz
Steven W. Zucker
+
FICNN: A Framework for the Interpretation of Deep Convolutional Neural Networks
2023
Hamed Behzadi-Khormouji
José Oramas
+
The Mind's Eye: Visualizing Class-Agnostic Features of CNNs
2021
Alexandros Stergiou
+
The Mind's Eye: Visualizing Class-Agnostic Features of CNNs
2021
Alexandros Stergiou
+
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
2018
David Bau
Jun-Yan Zhu
Hendrik Strobelt
Bolei Zhou
Joshua B. Tenenbaum
William T. Freeman
Antonio Torralba
+
Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs
2020
Robin Rombach
Patrick Esser
Björn Ommer
+
Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs
2020
Robin Rombach
Patrick Esser
Björn Ommer
Works That Cite This (95)
Action
Title
Year
Authors
+
Semantic Network Interpretation
2018
Pei Guo
Ryan Farrell
+
PDF
Chat
Convolutional neural network on three orthogonal planes for dynamic texture classification
2017
Vincent Andrearczyk
Paul F. Whelan
+
PDF
Chat
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
2019
Alejandro Barredo Arrieta
Natalia DĂaz-RodrĂguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
Alberto Barbado
Salvador GarcĂa
Sergio Gil-LĂłpez
Daniel Molina
Richard Benjamins
+
PDF
Chat
Pros and cons of GAN evaluation measures
2018
Ali Borji
+
Methods for interpreting and understanding deep neural networks
2017
Grégoire Montavon
Wojciech Samek
KlausâRobert MĂŒller
+
PDF
Chat
Understanding and Improving Kernel Local Descriptors
2018
Arun Mukundan
Giorgos Tolias
Andrei Bursuc
Hervé Jeǔou
OndĆej Chum
+
PDF
Chat
Explaining Neural Networks Semantically and Quantitatively
2019
Runjin Chen
Hao Chen
Ge Huang
Jie Ren
Quanshi Zhang
+
Quantifying Layerwise Information Discarding of Neural Networks.
2019
Haotian Ma
Yinqing Zhang
Fan Zhou
Quanshi Zhang
+
Unsupervised Learning of Neural Networks to Explain Neural Networks
2018
Quanshi Zhang
Yu Yang
Yuchen Liu
Ying Wu
SongâChun Zhu
+
PDF
Chat
Multi-Level Encoder-Decoder Architectures for Image Restoration
2019
Indra Deep Mastan
Shanmuganathan Raman
Works Cited by This (24)
Action
Title
Year
Authors
+
Very Deep Convolutional Networks for Large-Scale Image Recognition
2014
Karen Simonyan
Andrew Zisserman
+
PDF
Chat
Understanding deep image representations by inverting them
2015
Aravindh Mahendran
Andrea Vedaldi
+
PDF
Chat
Describing Textures in the Wild
2014
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
Sammy Mohamed
Andrea Vedaldi
+
PDF
Chat
Going deeper with convolutions
2015
Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
+
PDF
Chat
ImageNet Large Scale Visual Recognition Challenge
2015
Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
+
Convergent Learning: Do different neural networks learn the same representations?
2015
Yixuan Li
Jason Yosinski
Jeff Clune
Hod Lipson
John E. Hopcroft
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+
PDF
Chat
Learning Image Representations Tied to Ego-Motion
2015
Dinesh Jayaraman
Kristen Grauman
+
PDF
Chat
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
2016
Mehdi Noroozi
Paolo Favaro
+
Wide Residual Networks
2016
Sergey Zagoruyko
Nikos Komodakis